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Abstract

Certain tasks, such as formal program development and theorem proving, fundamen-
tally rely upon the manipulation of higher-order objects such as functions and pred-
icates. Computing tools intended to assist in performing these tasks are at present
inadequate in both the amount of 'knowledge' they contain (i.e., the level of support
they provide) and in their ability to 'learn' (i.e., their capacity to enhance that support
over time). The application of a relevant machine learning technique - explanation-
based generalization (EBG) - has thus far been limited to first-order problem rep-
resentations. We extend EBG to generalize higher-order values, thereby enabling its
application to higher-order problem encodings.

Logic programming provides a uniform framework in which all aspects of explanation-
based generalization and learning may be defined and carried out. First-order Horn
logics (e.g., Prolog) are not, however, well suited to higher-order applications. Instead,
we employ AProlog, a higher-order logic programming language, as our basic framework
for realizing higher-order EBG. In order to capture the distinction between domain
theory and training instance upon which EBG relies, we extend AProlog with the
necessity operator 0 of modal logic. We then provide a formal characterization of both
the extended logic, A 0 Prolog, and of higher-order EBG over A0Prolog computation.
We also illustrate applications of higher-order EBG within program development and
theorem proving.

Within the architectures of traditional learning systems, the language for problem
representation and solution (i.e., the programming language) is separated from the
underlying learning mechanism. Herein we propose an alternative paradigm in which
generalization and assimilation are realized through integrated features of the program-
ming language, and are therefore under programmer control. In this way, the developer
can leverage domain knowledge and provision for user interaction in the programming
of learning tasks. Thus, while A'Prolog - the logic extended with generalization and
assimilation features - is not itself a learning system, it is intended to serve as a
flexible, high-level foundation for the construction of such systems.

For A'Prolog to afford this programmable learning, constructs are necessary for con-
trolling generalization, and for assimilating the results of generalization within the
logic program. The problem with the standard means by which Prolog programs are
extended - assert - is that the construct is not semantically well-behaved. A more
elegant alternative (adopted, for example, in AProlog) is implication with its intu-
itionistic meaning, but the assumptions so added to a logic program are of limited
applicability. We propose a new construct rule, which combines the declarative se-
mantics of implication with some of the power of assert. Operationally, rule provides
for the extension of the logic program with results that deductively follow from that
program. We then extend rule to address explanation-based generalization within
another new construct, rule-ebg. While rule and rule-ebg are developed in the
framework of AProlog, the underlying ideas are general, and thercforc applicable to
other logic programming languages.

In addition to developing and formally characterizing the AoProlog language, this thesis
also provides a prototype implementation and numerous examples.
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Chapter 1

Introduction

Broadly speaking, this thesis should be viewed as a language design effort. Rather than
starting from scratch, this effort considers extensions to the higher-order logic programming
language AProlog [100], itself the subject of current research. These enhancements focus
upon the incorporation of generalization and learning, and in particular, explanation-based
generalization (EBG) and learning (EBL), within the framework of AProlog. While learning
is central to this work, the dissertation does not contain any demonstrations of performance
improvement, such as through timing evaluations or learning curves. This is because the
focus of this thesis is not a 'stand alone' problem solver that learns. Rather, it is a program-
ming language - A'Prolog.

The preceding distinction is fundamentally important to the evaluation of this work: First,
unlike typical learning systems, A'Prolog does not pose its own learning problems. Instead,
A'Prolog incorporates constructs that provide for programmable generalization and assimi-
lation. By integrating learning mechanisms within the programming language, we defer one
of the more difficult problems faced by a 'learner': determining over what computations to
attempt learning, or in other words, determining when to learn. Our approach allows the
programmer (or client) to explicitly control learning within the same language as that in
which the problem is encoded. We claim that it is the client which can best coordinate
learning, as he is in the best position to leverage domain knowledge and user-interaction.
Although A'Prolog is not itself a learning system, it is intended to serve as a high-level
foundation for the implementation of such systems.

This thesis, however, embodies more than just a novel approach to the formulation of learning
tasks within logic programs: we herein extend and reformulate the paradigm of EBG, and
moreover, develop semantically straightforward means by which EBG and more limited
forms of generalization can be integrated within the logic programming framework. Some
background is in order.

Higher-order representation languages. We distinguish the representation language to
be the subset of a programming language concerned with the encoding (or representation)
of data. For conventional programming languages, the representation language includes
expressions for booleans, integers, reals, strings, etc. Typical representation languages are
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first-order in that there are no special primitives to encode higher-order, or argumen taking
values, such as functions, procedures, and predicates. This, in turn, means that in order to
program over higher-order domains (that is, formulate tasks that manipulate higher-order
objects), the client must himself come up with an encoding, and then explicitly program
fundamental higher-order operations (e.g., substitution, matching, the occurs check'). To
some extent, this situation is analogous to a programmer having to explicitly code basic
arithmetic or string operations.

Of course, for the vast majority of programming, the data being represented is first-order,
and thus higher-order representation languages are irrelevant. However, for programming
over higher-order domains - for example, mathematics (where the objects to be manip-
ulated include functions and predicates), and programming itself (in which programs are
manipulated) - higher-order expressivity is of substantial importance. Witness the success
of higher-order programming languages such as ML, LISP, Scheme, and AProlog.

Explanation-based generalization. We have mentioned that higher-order languages are
particularly suited to such tasks as formal program development and theorem proving. The
tools which perform or assist such tasks, however, are at present inadequate in both the
amount of 'knowledge' they contain (i.e., the level of sapport they provide) and in their
ability to 'learn' (i.e., their capacity to enhance that support over time).

The application of a relevant machine learning technique, explanation-based generalization,
has thus far been limted to generalizing first-order representation languages. By extending
this technique to higher-order EBG - explanation-based generalization in which the candi-
dates for generalization include higher-order objects, we facilitate EBG's application to such
naturally higher-order domains as program development and theorem proving.

EBG establishes the weakest preconditions sufficient to apply a particular problem solving
strategy in general, thereby speeding the subsequent solution of analogous problems. Re-
cently, the logic programming paradigm has been touted as a foundation for EBC, because of
its declarative nature, due to its support for unification and search, and because it admits a
common representation for all aspects of EBG. However, for the domains in which we are in-
terested, the first-order representation language of Prolog is inadequate. Instead, we provide
a formulation of higher-order EBG over AProlog - one of the fundamental contributions of
this dissertation.

'Logical' and programmable mechanisms for controlling generalization and as-
similation. In order to utilize these generalizations, there must be a mechanism for ex-
tending the existing logic program P with new clauses. The problem with the standard
means by which Prolog programs are extended - assert - is that the construct is not
semantically well-behaved. As a result, programs making use of assert are harder to reason
about and manipulate (e.g., compile). For this and other reasons, assert is not part of

'The occurs check, as familiar from logic programming, determines whether a variable occurs free within
an expression [124, pp.69-70].
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AProlog. We herein propose a new construct, rule, which has some of the power of as-
sert, but also offers a straightforward semantics reconcilable with AProlog. Operationally,
rule provides for the extension of the logic program with results that deductively follow
from that program. Later we devise an analogous construct, rule.ebg, that constructs and
assimilates explanation-based generalizations. Herein lies a second thesis contribution: se-
mantically straightforward constructs for controlling generalization and assimilation within
the logic programming framework.

A'Prolog. The enhancement of AProlog with higher-order EBG and with a means for
coordinating learning yields A'Prolog. The early chapters of this dissertation set the stage
for this language by developing each of the preceding topics, relying heavily throughout
upon examples. (In fact, our examples where produced via a prototype implementation
of A'Prolog.) The third thesis contribution is this language itself, which we claim is an
attractive vehicle for the formulation of tasks that benefit from its higher-order representa-
tion logic and programmable generalization and learning. Moreover, A'Prolog provides this
functionality in such a way that user-interaction (for the addressing of problems beyond the
capabilities of the logic program itself) can be smoothly integrated.

1.1 Thesis Contributions

In somewhat more concrete terms, this thesis contributes the following:

" The rule construct, which provides a semantically sound means for universal gener-
alization (i.e., the selective universal quantification of free variables) within the logic
programming paradigm, and in particular AProlog.

" A formal account of rule, and its variant lemma.

" An alternative formulation of the EBG paradigm relying upon modal logic to formalize
the heretofore tacit distinction between domain and training theory.

* The extension of the EBG algorithm to treat higher-order representation language.

" A formal account of higher-order EBG (in terms of a AProlog meta-interpreter).

" The realization of EBG as a programmable feature of A'Prolog through a generaliza-
tion of the rule construct - rule.ebg.

* A formal account of rule-ebg, and its variant lemma-ebg.

* The integration of all of the above within AProlog in a manner that admits user-guided
problem solving and generalization.

" Numerous examples.
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Chapter 2

Motivation

This chapter attempts to establish an appropriate framework for the ideas developed within
this dissertation. To that end, it is necessary to discuss the application of formal meth-
ods to program development and theorem proving - a topic much more thoroughly and
eloquently treated by others: see, for example, Dijkstra [34, 36], Sintzoff [1191, Gries [51],
Broy [11], Bauer [5], Scherlis & Scott [116], Balzer, Cheatham & Green [2], Meyer [82],
Constable, et al. [20], Barwise [3], and more recently, Gerhart [48] and Wing [135]. Readers
primarily interested in our extensions of the explanation-based learning paradigm or in our
enhancements to the logic programming language AProlog, may find this chapter largely
superfluous.

The results of the programming process, namely programs, are necessarily expressed for-
mally, that is, within formal language. Similarly, an increasing amount of mathematics is
carried out within formal language. A formal language is one that is mathematically precise
- that is, it has a well-defined syntax (e.g., through a BNF grammar) and a well-defined
semantics (e.g., through a mathematical model). Formalization is, then, the process of cod-
ifying ideas expressed informally (e.g., in a natural language) within a formal language. In
general, formalization requires resolving ambiguity, thereby achieving the precise expression
(and hence communication) of concepts. The classification 'formal method' is a term applied
to paradigms that more strongly rely upon formal language.

While there exist a wealth of tools to assist the tasks of program development and theorem
proving, the level of support they provide is generally inadequate. If we are to build tools
that offer a substantially higher level of functionality, it is essential that we continue to place
a greater reliance upon formal methodologies. This is due to tne fact that formal techniques
facilitate a wider and deeper penetration of machine support, simply because they require
that more of the relevant 'knowledge' be encoded in a formal (i.e., a machine manipulable)
language.

Of course, successfully coding programming or theorem proving 'knowledge' a priori is im-
possible due to the scope, complexity, and evolutionary nature of these domains. Rather,
tools must support the assimilation of experience gained in the course of solving problems.
However, simply memoizing (i.e., caching) particular solutions will be insufficient; instead,

9



Programming

Informal Requirements Formal Implementation
(Natural Language) (Programming Language)

Validation

Figure 2.1: Initial Approach

experience must be abstracted or generalized. Learning, the ability to generalize and assim-
ilate from experience, will therefore have a significant impact on the success of future tools
and methods.

The vehicle we have chosen for experimenting with generalization and learning over the
domains of program development and theorem proving is the higher-order logic programming
language AProlog. These domains demand a higher-order treatment in that they require the
manipulation of higher-order objects, such as functions and predicates. AProlog provides
the simply-typed A-calculus for the representation of higher-order objects, and furthermore
supports higher-order programming - that is, the ability to create goals and programs and
pass them as arguments. The latter concern is particularly relevant for the realization of
programming tools, since it affords the ability to manipulate the logic program itself.

2.1 New Computing Tools for Programming and Math-
ematics

2.1.1 Tools for Programming

An initial view of the programming process is depicted in Figure 2.1: given a set of informal
requirements, programming is the task of constructing a (formal) program to meet those
needs. This paradigm is, however, problematic. Consider that programmers are often given
the task of determining what it is that existing code does. Can you answer that question
for the program of Figure 2.2, which is taken from Bentley's Writing Efficient Programs [6,
p.60]?1 The only substantive modification I have made is to replace the procedure's descrip-
tive name with f. The answer is given below.

Program specification and program abstraction. One difficulty with producing un-
derstandable code is that the goals of clarity and efficiency tend to be mutually exclusive.
Now consider a formal specification of the preceding program, given in Figure 2.4. From
this, the reader presumably has little trouble recognizing the Fibonacci function. What is

1The choice of example is borrowed from a presentation by William Scherlis.
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f(n) = var a,b,i: integer
begin

if n < 0 then return 0;
if n < 2 then return 1;
a 1;
b4-l;
for i -- 1 to (n div 2) do begin

a -- a+b;
b b+a
end;

if odd(n) then b *- b+a;
return b

end

Figure 2.2: A puzzling program

it that distinguishes specification and implementation? Primarily, the specification is more
abstract, in that much of the detail of the implementation has been omitted, while the
implementation is more efficient (in this case because it does not recompute values). In
general, programs are made efficient by making commitments to data representation, order
of computation, etc., and then optimizing on the basis of those commitments. This process
of specialization necessarily complicates the functionality with procedural detail capturing
how that functionality is to be achieved [115, 116].

Like the implementation, the Fibonacci specification is formal since it is expressed in a (po-
tentially) formal language. Languages for formal specification are generally characterized as
abstract, very high-level, or wide-spectrum, and often are nondeterministic or nonexecutable.
The term 'wide-spectrum' is indicative of the same language serving for both specification
and implementation (although either might be restricted to a particular subset of that lan-
guage).

The construction of a formal specification divides the task of programming into two parts:
the transition from informal requirements to formal specification, or 'what', and the transi-
tion from specification to efficient implementation, or 'how.' In the ideal, then, specification
languages serve to express the program's intended functionality unencumbered by details
of computation strategy. (Our use of the term 'program' is intended to encompass the
spectrum from specification to implementation.) The resulting programming methodology
that results is illustrated in Figure 2.3. A substantial number of general and special pur-
pose specification languages have been developed: consider, just for example, Larch [52, 53],
CIP-L [4), GIST [1341, Refine [120], Z [122], and RAISE [101]. (Meyer provides an acces-
sible introduction to formal specification and contrasts the approach with natural language
specification [82], while Wing gives an overview [135].)

Our discussion of high-level languages has not touched upon the range of useful abstrac-

11



Formalization

Informal Requirements Formal Specification
(Natural Language) (Very High-level Language)

Validation

Verification

Programming

Formal Implementation
(Programming Language)

Figure 2.3: Program Specification Approach

f(O) = 1
f(1) = 1
f(n) = f(n-1)+f(n-2)

Figure 2.4: A less puzzling program

tion techniques in programming languages: Consider, again just for example, abstract data
types, polymorphism, program libraries, object-oriented techniques, Dershowitz's program
templates [28), idioms in the Programmer's Apprentice [111, 133], structuring techniques
such as module and interface definitions, and finally those abstractions associated with
computer-aided software engineering (CASE) management tools [18]. But while abstractions
of programming language go a long way toward easing the task of program development, we
claim that they are inherently limited.

Program rationales. Consider again the task of understanding the Fibonacci implemen-
tation of Figure 2.2. Given that the formal specification captures what the implementation
is doing, the programmer is still left to determine how it is accomplished. Reverse engineer-
ing refers to this problem of a posteriori reconstructing the rationale for an implementation,
a nontrivial task for even our simple example. An informal rationale linking the Fibonacci
specification and implementation is given in Figure 2.5. We claim that it is the combination
of specification and rationale that best elucidate the implementation.

What should be the real results of the program design process? If program executions
were the sole results of interest, then it would be sufficient that the result of programming
be simply a program. But this is rarely the case in practice. Most programs undergo
analysis, modification, and adaptation, usually during their original development. Under
these circumstances, delivering the program itself is simply not sufficient. An indication is the
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1. Compute successive pairs of Fibonacci numbers with a tail recursive program:

2. Replace tail-recursion with iteration.

3. Unroll the loop once. This allows the removal of a trivial assignment and a temporary
variable.

Figure 2.5: Fibonacci Rationale

experience of software maintainers, who spend the majority of their time reverse engineering
existing code. (Lientz & Swanson's survey claims that maintenance represents approximately

70% of software cost [78].) The problem is that more knowledge has been brought to bear
on the implementation of a program than is evident in the code alone. This knowledge may
be presented in the form of a rationale or design history of the program [116, 33]. Within
a design-based paradigm, the designed objects should not be programs, but rather program
rationales.

Program modification is ordinarily very difficult for programmers because, like a posteriori
verification, it requires rediscovery of concepts used during the development of the imple-
mentation. But by preserving the rationale of the initial program, it is often possible to
pinpoint the design decision that must be altered, and carry over (i.e., replay [97]) much of
the remaining structure of the original development.

Figure 2.6 illustrates this paradigm. The new formal object - the design record - serves
as a 'road map' from specification to implementation; that is, it captures the sequence of
design decisions (represented formally) from which the implementation can be derived from
the specification. The rationale may be considered a meta-program in that it is a program
that manipulates other programs.

Successive refinement paradigms are a step toward design-based development in that the
informal programming process is replaced with a series of programs, beginning with the
specification and leading to the implementation, each of which is generally of better per-
formance than its predecessor. Consider, for example, capturing the evolution of Fibonacci
with a series of programs, each annotated with the appropriate comment from the rationale
of Figure 2.5. These successive programs might be expressed within a single wide-spectrum
language or within several layers of increasingly concrete languages. The successive refine-
ment model divides program development into more intelligible and more easily justified
steps, in that way affording greater confidence in the resulting implementation.

There are, however, several reasons to encode program rationales formally rather than infor-
mally. First, by making design records formal objects, we increase the likelihood that they
will actually be written and maintained. Consider the cynical yet all too relevant words of
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Formalization

Informal Requirements _ __ Formal Specification

(Natural Language) Validation (Very High-level Language)

Conceptualization

Informal Programming
Strategy or Plan Meta-Programming Formal Rationale

(Natural Language) (Design Record)

Requirement .
Satisfaction

Formal Implementation
(Programming Language)

Figure 2.6: Program Rationale Approach

14



Dave Storer [7, p.60]: "Don't get suckered in by the comments - they can be terribly mis-
leading. Debug only the code." More significantly, a formal design history is by definition
precise and, further, allows us to make claims about the relationship between specification

and implementation. For example, if each of the design steps is truth preserving, the re-

sulting implementation is correct by construction. Finally, explicit formal rationales may
themselves be manipulated by computing tools: in particular, they may be abstracted (to
produce programming strategy) and reused on related problems.

The design-based paradigm of programming is by no means a new idea: it has been espoused
by many researchers through a series of methodologies over several years. These approaches
range from unstructured successive prototyping schemes to design frameworks in which an
account (a rationale) is associated with the individual steps of program development. Within
these structured design-based paradigms, rationales may themselves be formal (rules, proof
steps) or informal (comments). The following enumerates work on the formal end of this
spectrum:

* Program transformation (e.g., [13, 42, 68, 115, 121]) - This approach is best visualized
as a state/operator space in which the states are programs and the operations are
transformations mapping between programs. Typically, program transformations are
largely syntactic manipulations, which improve efficiency when sequenced effectively.
They may or may not preserve the meaning of the program. Transformations have
been applied in a number of different ways:

- automatically, often within the compilers of high-level languages. Here no ex-
plicit design record is built; rather it is implicit in the transformation engine or
expressed by directives given to the compiler (typically as annotations within the
programming language).

- via an explicit meta-program - a sequence of transformations specified a priori.

- interactively.

The term 'program transformation' is very broad, encompassing any well-defined op-
eration on a program. (See Chapter 7 for examples and further discussion.)

" Interactive constructive programming or proofs as programs (e.g., NuPRL [20], Calcu-
lus of Constructions [211) - These are paradigms in which the programmer proves a
theorem (or specification) constructively, thereby implicitly defining an algorithm for
producing the answer. The program is then extracted from the proof.

" Proof transformation [104, 80] - This is a hybrid of the transformation and proof-
based approaches in which proofs rather than programs are transformed. This combi-
nation moves correctness considerations outside of the transformation semantics, since
the resulting proofs may be checked for validity (presumably by machine).
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2.1.2 Tools for Mathematics

Unlike programs, mathematical proofs are not inherently formal: their role has simply been
to convince other mathematicians of a theorems validity [24, 3]. And in terms of human
consumption, informal arguments axe generally superior to formal ones. Nevertheless, in
order to enhance the application of computing tools to theorem proving tasks, proofs should
be represented formally. The same arguments applied within the discussion of program
development are relevant here: (1) formal proofs are precise, (2) they may be manipulated,
and in particular, checked and/or reapplied by a machine, and (3) they may be generalized
(i.e., abstracted) by machine to represent theorem proving strategy, and thereby utilized in
new situations.

The above discussion suggests an analogy between theorems (mathematical formulas) and
specifications (programs), and also between proofs and program rationales [116]. We shall
use the term derivation to encompass the formal reasoning supporting either a theorem or a
program implementation, and the discussion to follow pertains to both domains. In fact, for
the 'proofs as programs' paradigm, the process of programming is reduced to one of theorem
proving.

2.1.3 Formalization

Formal methods have been maligned in the literature: see in particular, De Millo, Lipton
& Perlis [24] and Fetzer [45]. The essential issue is the open philosophical question of the
extent to which mathematical and programming knowledge can be formalized. To some
degree, the deeper relevance of the thesis rests upon the formalist's viewpoint: that any line
of reasoning may be formalized. This discussion is, however, beyond the scope of this thesis.
Interested readers should pursue the above references, as well as Barwise's reply [3] and that
offered by Scherlis and Scott [116]. The debate has continued most recently with an article
by Dijkstra on computer science education and the responses it elicited [35].

A more limited criticism of formal methods, espoused for example by some software engi-
neers, is that while formal techniques work well for mathematically elegant problems (e.g.,
Fibonacci), they are ineffective at addressing the range and scale of problems faced by pro-
grammers. Our response is fourfold: First, we need more expressive and special purpose
specification languages that can formally, concisely, and elegantly capture the functionality
of a greater variety of systems. Second, we need more expressive meta-languages to capture
programming design decisions, again formally, concisely, and elegantly. Third, the tools sup-
porting formal methodologies must provide substantially greater levels of assistance to the
user. Of course, the goals of better languages and better tools are not mutually independent:
progress on tools is limited by the elegance and expressivity of the language, and language
improvements will come out of better tools.

And finally, it must be recognized that formal methods are one component of an overall soft-
ware engineering strategy: In suggesting the design-based view, we are not advocating the
replacement of existing methodologies and tools with some new all-encompassing paradigm.
Instead, we believe that for certain tasks - for example, highly optimized or mathematical
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algorithms, or procedures requiring a high degree of confidence - the design-based ap-
proach will become feasible. The way to proceed, then, is to make design-based paradigms
more broadly applicable, to make them easier to use, and to integrate them within existing
methodologies and tools.

2.2 The Relevance of Logic Programming and AProlog

Generally, search and unification (matching) are integral components of theorem provers and
formal programming tools. Logic programming languages are particularly suited to these
domains because of their implicit support for both search and unification. This allows the
programmer to focus at a high-level, on the 'logic' if you will, with less regard for underlying
implementation details. The result is a more clear and concise formulation of many problem
domains.

At the same time, the tasks of program development and theorem proving are fundamentally
higher-order, since they rely upon the manipulation of higher-order objects - objects that
take other objects as arguments. Higher-order objects are most naturally represented with a
name binding operator such as A. AProlog provides for the elegant representation of higher-
order objects in that it contains the typed A-calculus as a datatype. And furthermore,
AProlog affords the manipulation of these higher-order encodings by providing the A-specific
operations of cv/i7-conversion as well as higher-order unification.
AProlog is also an attractive meta-language for the expression of formal rationales and proofs.
This is because of the above, and because AProlog offers the further expressivity of nested
implication and explicit quantification. The language also provides a degree of polymor-
phism, which allows logic programs (and thus derivations) to be abstracted over a particular
datatype.
In addition to higher-order objects, AProlog supports higher-order programming, in that one
may create goals and programs and pass them as arguments. This allows us to naturally
reason at the meta-level, that is about the logic program itself. The expressiveness of higher-
order programming becomes important with multiple meta-layers of language, because it
elegantly facilitates reflection - the mapping from data to executable logic program, and
reification - the reverse mapping (§5.3.1). Indeed, since we are interested in program
development paradigms and theorem provers, we further use AProlog (albeit in a limited
way) as a meta-meta-language, for expressing the manipulation of derivations (i.e., rationales
and proofs).

In summary, AProlog is an attractive framework in which to experiment with tools for
theorem proving and program development because it is both a logic programming language
and a higher-order programming language. We expand upon this discussion within the next
chapter. A more complete argument is made within Felty & Miller [43] and Hannan&
Miller [59].
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2.3 The Need for Generalization and Learning

To generalize an expression is to make that expression less specific - that is, to make it,
in some sense, more broadly applicable. To abstract an expression, on the other hand, is to
make it less detailed - that is, to abbreviate it in some manner. Typically, abstraction and
generalization coincide: operations that make an expression more broadly applicable most
often remove detail: for example, replacing a constant in rained tuesday with a variable
in rained x. 2 For the discussion to follow, we use the terms generalization and abstraction
interchangeably.

In the preceding sections, we suggested formal representation of derivations as a means by
which to capture problem solving experience or design knowledge. An overriding limitation
of formal derivations is that they are often so verbose as to be unintelligible. Indeed, the
attraction of informal rationales is that they omit less pertinent details. Generalization
is thus a potential avenue for making formal methods more palatable to the user. For
example, it is our belief that by abstracting sequences of low-level derivation steps, we
can produce more lucid, high-level derivations (much as high-level programming languages
abstract sequences of machine instructions).

Effective tools for supporting formal methods will contain a substantial store of information,
such as general programming techniques, previously solved problems (e.g., objects and their
associated methods), problem domain theories, or derived mathematical results. As men-
tioned earlier, successfully coding this 'knowledge' a priori is impossible due to its scope,
complexity, and evolutionary nature. Rather, tools must support the assimilation of experi-
ence gained in the course of solving problems. Our previous claim - that formal tools must
support learning - simply means that they must facilitate the growth of this knowledge
base, and that such growth must often include abstracted or generalized experience. The
ultimate goal for generalization and learning within a designed-based paradigm is to enable
the construction of libraries of derivations and abstracted derivations analogous to (and used
in combination with) the program libraries of today.

We do not suggest that the technique of higher-order explanation-based generalization and
learning developed herein is sufficient for automating the spectrum of generalization tech-
niques necessary to realize this vision. Rather, we believe that EBL is an attractive technique
to explore, particularly because validity is not sacrificed in the generalization process: that
is, the results of explanation-based generalization are guaranteed to be sound (i.e., follow
from the existing theory).

2One notable exception to this is disjunction: while rained tuesday V rained wednesday is more
'general' (i.e., less specific) than rained tuesday, it is not more 'abstract' (i.e., less detailed).
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Chapter 3

AProlog - A Higher-Order Logic
Programming Language

Nadathur & Miller introduce the higher-order logic programming language AProlog [100).
AProlog extends traditional logic programming languages

" by providing the simply-typed A-calculus as a data-type,
" by incorporating the higher-order unification required for A-terms,
* by including more expressive logic constructs: embedded implication and explicit

quantification,
" by admitting higher-order predicates in a principled manner,
" by providing a degree of polymorphism, and
" by supporting abstraction mechanisms such as modules and higher-order data-

types.
Within this chapter we briefly introduce AProlog. While this work relies upon and extends
AProlog, the language is itself a research prototype. (This chapter presumes some familiarity
with Prolog and the typed A-calculi; respective introductions are Sterling & Shapiro [124
and Hindley & Seldin [63].)

3.1 The Logic Programming Framework

In general, logic programming languages offer several features relevant to formal program
development and theorem proving:

The underlying support for unification facilitates the implementation of rewrite and
inference rules (e.g., program transformations and theorem proving tactics). Typically,
the application of such rules relies upon unification or matching - unification in which
only one term's variables may be instantiated. Moreover, logic programming's support
for unification is unobtrusive, allowing rules to be elegantly expressed.

e The logic programming clause was designed to encode inference rules: the head of
the clause specifies the conclusion of a rule, while the body contains its premises.
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Rewrite rules may also be elegantly expressed as clauses: the head typically consists
of a predicate relating the rewrite's input and output, and the body specifies any
necessary preconditions.

" The implicit search paradigm of depth-first backchaining is often sufficient for applying
inference rules. And even for cases in which it is inadequate, the default search strategy
can still aid specification, prototyping, and testing.

" The default search mechanism may be elegantly augmented with programmer-defined
control, including guidance through user-interaction.

However, first-order logic programming languages, such as Prolog, suffer from other restric-
tions that make them less suitable for higher-order problem domains.

3.2 The Simply-typed A-Calculus

AProlog replaces Prolog's first-order terms (i.e., Herbrand terms1 ) with terms of the simply-
typed A-calculus. The A-calculi are a family of languages introduced to study higher-order
programming. Often the only data-type the pure forms of these languages contain is that
of A-terms - functions constructed with the binding operator A. A-calculi are nevertheless
rich languages with which to experiment, in part because more complex data-structures may
be encoded as functions [63].

Simple types. Before discussing A-terms, we introduce the type system over A-terms.
Simple types may be inductively defined as

Ir ::--- a IAIrl ---+ r2 I a rl... r.

where r ranges over simple types, a over type constants, and A over type variables. General
notation: We use boldface for constants (as well as for meta-variables such as a, which range
over constants), and italics for variables (as well as for meta-variables such as -r). Function
types are constructed with -- +, which associates to the right: A - B - C is read as
A - (B -p C). Type constructors consist of a type constant followed by some number of
argument types (e.g., list int).

Two predefined type constants of particular interest are int - the type of integers, and o
- the type of AProlog propositions (goals and clauses). New type constants are defined by
explicit declaration:

kind bool type.
kind list type - type.

1Herbmand terms (i.e., those within the Herbrand universe) may be defined as

M ::= c I f M,... M"

where c ranges over first-order constants and f over function constants [124].
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The above use of - produces a kind rather than a type: types insure that A-terms are
well-formed, while kinds insure that the simple types themselves are well-formed [63].

A-terms. Simply-typed A-terms may then be inductively defined as

M ::= c I x:r I MN I Ax:T.M

where M and N range over terms, c ranges over constants, x over variables, and r ranges over
simple types. The types of constant terms are separately declared within a type signature:

type succ int - int.

A given A-abstraction Ax:T.M is of function type r -* r' provided M has type r'. The
juxtaposition MN denotes a A-term application, which is of type r' provided M is of type
T ---4 r and N is of type r. A-term application associates to the left: abc is read as (ab)c.
Thus the Prolog term p(a, b) is written as p a b in AProlog.

Type reconstruction. A-terms become exceedingly redundant if all of the types required
by the syntactic definition are explicitly included. A more succinct representation is afforded
by eliding unnecessary type information. Type reconstruction is the process of rederiving
those omitted types. In practice, all types are omitted from AProlog terms. Instead, the
types of variables, untyped constants, abstractions, and applications are determined from
context. In the sequel, we will omit types with the understanding that they are to be derived
through type reconstruction.
Type reconstruction may fail for A-terms that cannot be well-typed - i.e., typed subject to
the preceding rules. Similarly, type reconstruction may assign a lax or nonrestrictive type
to A-terms for which insufficient type information has been provided. Error and warning
messages, respectively, are typically provided by AProlog implementations.

Polymorphism. The inclusion of type variables within simply-types offers a simple form
of polymorphism. For example, the polymorphic identity function id _ Ax : A. x and double
function db = Af: A -+ A. Ax : A. f(fx) are given the types

type id A--A.
type db (A--+ A)----+ A---A.

Particular occurrences of id or db may then be 'instantiated' (through the binding of A) to
operate on distinct types, such as within id 1 and id db. The polymorphism of the simply-
typed A-calculus is also termed 'ML-style' or 'Milner-style' after the polymorphism of the
language ML [90].
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Basic operations on A-terms. We use the notation [N/x]M to denote the substitution
of N for free occurrences of x in M. (Bound variables may have to be renamed to avoid
capture; see below.) The term operations supported by AProlog include/- and yi-reduction
as well as a-conversion, which are defined as follows:

(Ax.M) N = .,o [N/x]M e.g., (Ax.Ay.fxy)y =>0 Ay'.fyy'

Ax.Mx =>', M provided x not free in M e.g., Ax.fx =:',7 f

Ax.M =. Ay.[y/x]M provided y not free in M e.g., Ax.X =, Ay.y

Closures over these operations yield corresponding notions of A-term convertibility: M is
said to be /-convertible to M' if there exists a sequence of /-reductions and /-expansions
(the inverse), applied at the top-level or to subterms, transforming A." into M'. We may
similarly define 77- and a-convertibility, as well as combinations thereof. We use = , or
simply =0,,, to denote the equivalence relation of afli7-convertible A-terms.

In this calculus, /7-reductions are normalizing and Church-Rosser [63] - that is, maximal
sequences of such reductions applied to a given well-typed A-term terminate with a unique
A-term said to be in /7-normal form. This property is a consequence of the typing given to
A-terms, and is crucial for the unification algorithm, since the convertibility of two terms can
be tested by comparing their normal forms for equivalence modulo the renaming of bound
variables (a-conversion).2

Higher-order unification. Unification is the process of producing a common instance
from two or more terms by instantiating either term's free variables with other terms. 3

We use the AProlog notation M = N to indicate that the A-terms M and N are to be
unified. When unifying terms, we are typically interested in the most general unifier (MGU);
for example, the MGU of px and py is simply (x = y), rather than the overly specific
(x = a, y = a). (We shall continue to use () to enclose unification constraints.)

Unification underlies the logic programming paradigm, but because AProlog terms are A-terms,
AProlog unification must be higher-order - i.e., it must support the instantiation of vari-
ables to functions as well as to first-order constants. Terms of the A-calculi, however, do
nout admit unique most general unifiers: consider that the unification of fa = caa allows
the variable f to be instantiated with any of Ax.caa, Ax.cxa, Ax.cax, or Ax.cxx, none of
which is an instance of another (they are all closed). Thus, higher-order unification is inher-
ently nondeterministic. Even worse, Goldfarb shows that higher-order (and in particular,
second-order) unification is undecidable [49]. However, a semi-decision procedure effective
in practice is presented by Huet [66] and extended by Elliott [39].

2 Unlike flqr-conversion, a-conversion is 'nondirectional.' Hence, in order to avoid expensive a-equivalence
tests, it is necessary to employ representations that do not explicitly name bound variables - e.g., de Bruijn
indices [22].

3Knight presents an overview of unification research in [73). For a formal treatment of first-order unifi-
cation, see Lassez, Maher & Marriott [76].
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3.3 Higher-order Language

A domain is said to be higher-order if it contains higher-order values - that is, values which
take other values as arguments (e.g., functions and predicates). For instance, the values
manipulated by a higher-order programming language include functions. (By 'manipulated'
we mean that functions are 'first-class' objects - i.e., they can be bound to variables, passed
as parameters, and returned from function calls.) Similarly, within a higher-order logic, the
values that can be quantified include functions and predicates.

On the other hand, we consider a representation language to be higher-order if it contains
a means for expressing argument binding: for example, the A of A-calculus or lambda in
LISP. Such languages are particularly amenable to representing the values of higher-order
domains, since the formulation of higher-order objects can be expressed with A. We follow
common practice in overloading the term 'higher-order' by applying it to values and domains
(semantic entities), as well as languages (syntactic entities).

Higher-order domains. Many domains naturally involve binding constructs, and are
thus best represented within higher-order languages: logics, programming languages, and
natural language [106, 88, 85, 103]. This same need for higher-order representation also
arises when one wants to reason 'at the meta-level' - that is, about AProlog programs. One
would like facts (propositions) or properties (predicates) to be objects themselves. Prolog
and other first-order representation languages allow this to some extent, but in a way that
is only operationally, but not logically motivated. AProlog, on the other hand, facilitates
higher-order programming - that is, the ability to create goals and programs, and pass
them as arguments.

Binding operators. Within a higher-order language, binding operators are typically
implemented via a single primitive such as A. For example, the function f(x) 2 * x
might be represented simply as f = Ax.2 * x. Similarly, Vx.3y. x < y might be expressed
as pi (Ax. sigma (Ay. x < y)). (In fact, this is the representation used within AProlog; the
former is simply a more readable abbreviation.) The implementation of other binding op-
erators in terms of A allows o/3r-conversion and A-term unification to be implemented once
within the representation language rather than within individual client programs (106, 60].
Relegating such tasks to the representation language makes for more succinct, elegant pro-
grams.

Examples of AProlog. The higher-order predicate select of type

type select (A - o) -- list A ----* list A - o.

may be encoded as

select P (x::K) (x::L) 4- Px, selectPKL.
select P (x::K) L = selectPKL.
select P nil nil.
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(As in Prolog ',' denotes conjunction. The symbol 4= represents implication, and is equiva-

lent to Prolog's :-. Finally, :: stands for the cons operation of LISP.) select P K L insures
that L is a sublist of K for which P holds. The following query, for example, selects the
grandparents from the given input list:

7- select (Ax.3y. parent y x, 3z. parent z y) (tom :: kate :: van :: leo :: nil) L.

(To minimize the need for parentheses, Ax.A x, 3y. B x y is parsed as Ax.(A x, 3y. (B x y))
that is, '.' binds very weakly to the right.)

Readers may argue that select could be formulated within Prolog simply by replacing P x
with apply P x, and further, that grandparent could itself be encoded as a top-level Prolog
predicate:

grandparent x 4- parent y x, parent z y.

In many situations, however, the 'inline' expression of higher-order arguments (such as the
unnamed grandparent) is either necessary or desirable: for instance, reformulation as a
clause is not applicable to higher-order functions, which are not predicates of type o. More-
over, first-order languages do not afford many operations over predicates, such as composi-
tion:

select-or P Q K L -# select (A.Px;Qx) K L.

(where the operator ';' represents inclusive 'or'.) Within Prolog, select-or cannot be pro-
grammed in terms of select (at least not without more complicated list operations); the
closest approximation is the inequivalent

select-or P Q K L s 5elect P K L.
select-or P Q K L .= select Q K L.

First vs. higher-order. When higher-order values are represented with first-order terms,
we often need 'new variables', need to check conditions such as 'where x does not occur in
M), or must implement substitution in a way that 'renames bound variables if necessary.'
In addition, procedures that depend upon the binding operator - e.g., a,677-conversion and
higher-order unification - must be explicitly programmed. We claim that all this makes for
a prohibitively complex encoding.

To justify such a conjecture, one might attempt to formalize a given higher-order example
within a first-order language. However, at best such a strategy could only establish the
inadequacy of one particular formulation. Arguing that first-order encodings are generally
insufficient for higher-order domains is more problematic, because first-order languages cer-
tainly are expressively sufficient (being Turing equivalent). The proper question is, rather,
one of expressive power and elegance - that is, are first-order languages sufficient to con-
cisely and cleanly program over higher-order domains? While the issue remains open, as
there exist no established criteria for making a determination, we remain convinced that
higher-order expressivity is crucial for many higher-order domains.
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Performance. The extent of the overhead incurred through higher-order operations re-
mains unclear. On the one hand, implementation of a,37r-conversion and higher-order unifi-
cation within the programming language is generally more efficient than user-programmed
encodings, since an extra layer of language is avoided. On the other hand, the full power
of undecidable higher-order unification is potentially too costly. Yet Huet's semi-decision
procedure is effective in practice, simply because typical applications of A-term unification
are more restricted than the worst case.

A subset of AProlog named L, is currently being developed by Miller [84]. L\ restricts higher-
order unification to maintain the attractive properties of first-order unification: namely de-
cidability and most general unifiers. The overhead of LA's restricted higher-order unification
is not significantly different than that of first-order. We further discuss L\ and its relevance
to this thesis in §10.2.3.

3.4 AProlog

3.4.1 Clauses and Goals

Now we turn to the logical connectives of the language. AProlog expressions are distinguished
based upon whether they appear as a goal G (i.e., a query) or a program clause D (i.e., a
rule or fact), which are each of proposition type o. For Prolog, these two classes may be
inductively defined as

G ::= true I A I G1 ,G 2 I G1 ;G2

D ::= true I A I A4=G

where G ranges over goals (also termed G-formulas or G-forms), D over program clauses (or
D-forms), and A over atoms. Atoms are propositional (in the Prolog case, Herbrand) terms
of type o that do not have a logical operator at the top-level: that is, c (A , B) is atomic,
while (c A , B) is not. By Prolog convention, variables within D are implicitly universal,
while those within G are implicitly existential.

The above characterizes the Horn clauses [124], the logical basis of Prolog. Horn clauses
may be generalized to higher-order Horn logic as follows:

G ::= true I A I G1 ,G 2 I G1 ;G 2 I 3x[:r].G
D ::= true I A I D ,D 2 I D4=G I Vx[:T].D

where we have replaced Prolog's Herbrand terms with AProlog's simply-typed A-terms.
Atoms now take the form p M M2..M , where p is a predicate constant and M M2..M,,
are its A-term arguments (although /3r-reduction may be required to reach this form).

AProlog is based upon the following generalization of higher-order Horn clauses:

G ::= true I A I G1 ,G 2  GI ; 2 ID=#-G I Vx[:r]. G I 3x[:r].G
D ::= true I A I D,,D 2 I D4=C I Vx[:r].D
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Both =* and -4= represent (intuitionistic) implication. Thus G = D and D .= G stand for
the same formula, where the latter is equivalent to Prolog's D G. Typically, a goal will
be written as D =*. G, while a clause will be written as D .4 G.

The above classes define the core of AProlog- the higher-order Hereditary Harrop for-
mulas [1001, which generalize Horn clauses while preserving the basic character of a logic
programming language. The logical operators have the following meanings and types (simple
types axe also employed to type logical expressions).

'and' o -. o . o
'or' (inclusive) o - o -- , o

= 'implies' o o - o
V 'for all' (A -- o) --- , o
3 'for some' (A -- o) -- o

The types for Vx. P and 3x. Q arise from their respective representation as pi Ax. P and
sigma Ay. Q.

3.4.2 An Abstract Interpreter for AProlog

So that readers may arrive at a better understanding of AProlog, we herein provide an
informal operational characterization of the language.4 Then within §3.7, we offer a formal
inference system.

Notation: First, we use P to denote an arbitrary logic program (set of D's). Next, P 1- G
denotes that G is a logical consequence of P - i.e., that G follows (in the intuitionistic sense
of logic programming) from P. In order to speak about the state of the logic programming
interpreter, we use P I- G to represent the problem of solving G given the program P.
Thus, while P - G expresses that G is logically valid given JP, P - G denotes that under
a particular interpretation (i.e., using a particular operational procedure for finding logic
programming proofs) G is derivable from P.

The table below contains a AProlog abstract interpreter, which consists of a series of backchain-
ing search steps that follow the structure of the pending goal G.

true P V true
and P V G1 , G2  only if F G1 and P iF- G2.
or P -G 1 ; G2  only if P - G1 or P - G2.

augment P - D * G only if {D} U P I- G.
instance P F- 3x. G only if P - [M/x]G for some A-term M.
generic P - Vx. G only if P - [c/x]G for a new constant c.
backchain P -A only if (VX. AX -# Gx) E P, Ax unifies with A, and P F Gy. -

4Our AProlog abstract interpreter is a slightly modified version of Nadathur & Miller's [100, p.813].

26



where X is a set of variables, VX represents quantification over that set, and Mx denotes a
A-term potentially containing free occurrences of X.

For the sake of intelligibility, the abstract interpreter above ignores details essential for both
correctness and efficiency:

" Order of evaluation - Conjunctive and disjunctive goals are 'evaluated' from left to
right in a depth-first fashion. For the or case, the right branch need only be solved
if the left fails (i.e., is not satisfiable); for and, the right branch is only checked if
solution of the left succeeds.

" Type information - To insure that A-terms within G are properly typed, a type sig-
nature E must be generated for a given . E is extended as required by the augment,
instance and generic operations.

* Logical variables - The instance strategy is realized by substituting a new logical
variable of the appropriate type for the unknown A-term. Subsequent computation
may then fill in the unknown value (via unification).

" Clause normal-form - The reader may have noticed that the backchain, or rule
application, step relies upon clauses of the form VX. Ax 4-= Gx, rather than the general
form for D's given by the inductive definition. In §3.6 we illustrate a transformation nf
that maps arbitrary D-forms into the normal-form Dnf - a conjunction of universally
quantified rules of the form A o= G. More formally, the structure of Dnf is defined as
follows:

Dnf ::= D I D, nf
DY :: D c Vx. DY

D.4 4-A.-=G

The program P may in this way be mapped to a set of clauses of the form VX. Ax 4 Gx.
(An atomic clause A becomes A 4- true.) Hence the test VX. Ax -o= Gx E P is cor-
rectly expressed as VX. Ax .4= Gx E nf(P).

AProlog follows the Prolog convention of universally closing (i.e., implicitly universally
quantifying the free variables within) the D-forms of the original program. Clauses
added to P via the augment step, however, remain open. Thus, P I- G potentially
alters P by instantiating free variables of P in the course of solving G: for example,
the AProlog query

?- p x= (p1, p2).

fails, as x is instantiated in the course of solving p 1.

• Clause unification - The backchain step is implemented by unifying the pending
atomic goal A with the head of a potentially applicable clause VX. Ax -= Gx. Like
Prolog, this unification is accomplished by replacing the clause's universally quantified
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variables X with new logical variables Y of the appropriate type. If Ay = A, the inter-
preter attempts the solution of P V Gy, where Gy is typically partially instantiated
by the unification of A and Ay.

" Deterministic clause selection - Finally, because the backchain strategy must have
a means to enumerate clauses effectively, the logic program P is in reality a list rather
than a set of D-forms. (The additions to P made through the augment step are
effectively inserted at the head of this list.) A depth-first backtracking strategy is then
taken to search for proofs of a given query.

" Atoms with variable heads - The higher-order Hereditary Harrop formulas disallow
certain atoms (those occurring in negative positions) from being a variable predi-
cate [100]. For example, the goal xM 1 ..M,, =*, G is prohibited, because its solution
could result in the assumption of a clause with a variable head (which would then be
universally applicable). This restriction is not, however, strictly enforced by our ab-
stract interpreter, nor for that matter within AProlog. Instead, goals and clauses may
contain a variable predicate such as the assumption xM 1 ..Mn, so long as x is instanti-
ated before the interpreter attempts to solve a goal xM 1 ..M, or assume a clause with
head xM1 ..Mn. This generalization is supported by current AProlog implementations.

3.4.3 AProlog Implementations.

This dissertation employs eLP, an implementation of AProlog developed by Conal Elliott and
Frank Pfenning in the framework of the Ergo project at Carnegie Mellon University [38]. eLP
is written in COMMON LISP and relies upon syntax tools of the Ergo Support System [77].
The examples presented within this thesis have each been run under eLP (or under an
extended version developed herein).

A substantially more efficient implementation of AProlog within Standard ML is currently
being completed by Pfenning. Yet another new AProlog implementation is being developed
by Pascal Brisset at IRISA in France (brissetfirisa.fr).

3.5 Example: Lists & Mapping

In the next two sections, we present two more-extended examples of AProlog. The latter
one, in particular, will be relevant to subsequent discussion.

The module within Figure 3.1 implements three simple operations over lists. List terms
are built with the constructors nil and :: (or 'cons'). Simple types for lists are produced
by the list type constructor: for example, list int is the type of integer lists, while list A
stands for homogeneous lists of an arbitrary type A. (Note that the latter does not admit
inhomogeneous lists - i.e., lists with elements of more than one type.)

The member function determines whether its first argument (of type A) occurs within its
second argument (of type list A). The equivalence test employed by member is A-term
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module lists.

kind list type -- * type.

type nil list A.
type '::' A- list A - lst A.
type member A - list A - o.
type append list A --- + list A --- + list A -- o.
type nth int - A -- + list A - o.

member z (z::L) L= !.
member z (y:: L) .= member z L.

append nil K K.
append (z::L) K (z::M) 4= appendLKM.

nth 0 z (y::L) 4= !,z=y.
nth n z (y::L) 4= misn- l,nthmzL.

Figure 3.1: List functions

unification. Cut (!) is a special side-effecting goal that commits the interpreter to all choices
made since the selection of the clause containing the cut.5 '6 In member, ! prohibits looking
further in the list once the given A-term has been found. Herein then, ! is used primarily to
improve efficiency rather than to change behavior.

The append predicate determines whether its first two list arguments may be appended to
yield its third. Since append is defined as a predicate (in the 'logic programming style')
rather than a function, it may be invoked with all arguments instantiated (as a 'check'), or
with any pair instantiated, in which case append determines whether there exists a third
list such that the 'append' relationship holds.

Finally, nth finds the nth element of a list.' The reason the first clause takes the given form
rather than

nth 0 z (x::L) 4= !.

is that the latter would continue down the list past the nth element y in the case that x 4 y.

The lists module could well have been presented within Prolog, as it does not make use
of AProlog's higher-order features. The same cannot quite be said of the mapping func-
tions contained within Figure 3.2. Of particular interest is the application of predicate P

'This includes AProlog's selection of alternative higher-order unifiers.

'For a thorough description of cut, see Sterling & Shapiro [1241.
7The is construct represents assignment: For m is n - 1, m is set to the numeric value that results from

evaluating n - 1. is differs from '=' in that the latter does not evaluate it arguments: m = n - 1 sets m to
be the symbolic expression n - 1.
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module maps.
import lists.

type map-fun (A -- B) - (list A) - (list B) -*o.

type map-pred (A -* B -- o) -- (list A) -- (list B) - o.
type reduce (A - B -- B) - (list A) - B - B - o.
type for-every (A -- o) -- (list A) -- o.
type for.some (A - o) - (list A) - o.

map-fun f nil nil.
map-fun f (x::L) ((fz)::K) 4 map-funfLK.

map.pred P nil nil.
map-pred P (z::L) (y::K) = Pzy, map-predPLK.

reduce f nil z X.
reduce f (u::L) z (fuy) 4 reducefLzy.

for-every P nil.
for-every P (z::L) = Pz, for-every P L.

for.some P (z::L) P z.
for.some P (:: L) .= for-some P L.

Figure 3.2: Mapping functions

in map-pred, for.every and for.some, without Prolog's somewhat encumbering apply
syntax. It is also important to note that the function f in map-fun and reduce is simply a
A-term; f is not a named procedure in the traditional sense of Prolog and other languages.
(In higher-order languages such as AProlog, functions can be explicitly constructed; within
first-order languages, functions can only be simulated as in apply p x.)

3.6 Example: Clause Normal-Form

The nform module of Figure 3.3 transforms arbitrary D-forms into the more restricted Dnf
given in §3.4.2. Recall that Dnf is defined as

Dnf::=D I Dnf,D nf

Dv D:= I Vx. Dv
D :=A4=G

The nf mapping is required by the abstract interpreter presented in §3.4.2. In fact, nf is
used by the eLP implementation for the clauses of the initial logic program P, as well as
the clauses added to P in the course of solving goals of the form D =' G. Moreover, when
we later extend AProlog with additional logical connectives, nf will serve as the basis of a
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new clause normal-form. Finally, nform is illustrative of D-form and G-form manipulation
in general, a recurring theme within more complex AProlog applications to come.

This normal-form conversion is captured by the following distributive transformations over
D-forms:

(1) Vx. (Dlix, D2X) = (Vx. Dixr) , (Vx. D2X)

(2) (Di , D2) G (Di .# ), (D -a)
(3) (Vx. Dx) € G == V lx. (Dx .= G) (provided x not free in G).
(4) (D 4- G ) 4-= G2 = D .4- (G i , G2)

Since Dnf requires conjunctions to be at the top-level, transformations (1) and (2) redis-
tribute i= and V inside of ','. Similarly, (3) redistributes 4= inside of V. Finally, (4)
collapses nested implications. Appropriate sequences of the above transformations map ar-
bitrary D-forms to D,f-forms. The proof is by induction over cases.

Before further exploring these transformations, there are two points to reinforce concerning
AProlog's higher-order notation. First, when a bound variable x is not included as a potential
argument to a variable function G as in Vx. (Dx 4= G), then x is not permitted to appear
free within G; that is, the free variable restriction following (3) is already captured within
the notation. Second, since Vx. Dx is represented as V (Ax.Dx) where D is itself necessarily
a A expression, it makes since to express the whole simply as V D.

For example, through the above transformations the following D-forms on the left are
mapped to the normal D-forms on the right:

q q 4- true
p= r =: q q 4-- (p, r)
p Vx. (r x =o q) V. q 4= (p, r x)
p Vx. (r x =* (q, s x)) Vx. q = (p, r x),

Vx. sx 4 (p, rx)

Within the code, ndform is the top-level routine; requantify redistributes a universal
quantification 'below' top-level conjunctions; and conjoin redistributes = below ',' and V,
by adding the subgoal G to the preconditions of each nested D-form.

It is important to recognize that V is used both as a data constructor to encode D-forms,
and as a logical connective - for example, the Vx within

conjoin G (VD) (VD') -t- Vx. conjoin G (Dx) (D'x)

If instead the above were simply

conjoin G (VD) (VD') 4= conjoin G (Dx) (D'x)

the variable x could be instantiated in the course of the computation. The explicit quantifi-
cation acts as a guard ensuring that x remain universal.
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module nform.

type ndform o -- o -- o.
type requantify o ---- o - o.
type conjoin o -* o -* --- 0.

requantify (Vx. Dlz, D2x) (D' , D') €= !, requantify (Vz. DIx) D',
requantify (Vx. D2z) D2

requantify D D.

conjoin G (DI , D2) (DI , D') = conjoin G D, D',
conjoin G D 2 D2.

conjoin G (VD) (VD') 4- Vz. conjoin G (Dz) (D'z).
conjoin G (A 4= true) (A o= G).
conjoin G (A o GI) (A 4= (G, GI)).

ndform (DI , D2) (YI , D2) €= !, ndform DI D1,
ndform D 2 2.

ndform (VD) l" €= !, (Vx. ndform (Dx) (D'z)),
requantify (VD') D".

ndform (D 4= G) LV' .= !, ndform DD',
conjoin G D' D".

ndform A (A 4= true).

Figure 3.3: Clause normal-form conversion.
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3.7 Inference System for AProlog

We may formalize the operational interpretation of AProlog given in §3.4.2 within an infer-
ence system. Our justification for doing this is twofold: (1) formal inference rules clarify the
preceding informal description, and (2) such a system may be employed to prove properties
of AProlog. The latter justification comes out of our need to establish the validity of AProlog
extensions we propose in Chapter 5. The casual reader may skip this section, although the
more formal discussions of Chapter 5 are then likely to be impenetrable.

Substitutions. A substitution is a mapping from variables to A-terms. We represent the
application of a substitution 0 to an expression M (containing free variables) as OM, and
we use 4'0 for the composition of substitutions 0 o 0. Substitution binds less tightly than
A-term application; that is, OMN = O(MN). Substitutions are applied to programs as well
as to goals, because, as previously mentioned, P may contain free variables that become
instantiated in the course of goal solution.

Recall the A-term reduction rules defined in §3.2:

(Ax.M) N =, [N/x]M
Ax.Mx =:::,7 M provided x not free in M

As was stated then, for the simply-typed A-calculus, maximal sequences of f# and q reductions
applied to a given A-term terminate with a unique A-term said to be in fl/-normal form. For
the remainder of this discussion, we assume that all A-terms are fli/-normal. This means
that substitution OM and A-term application MN are followed by 6 77-conversion to normal
form.

Further notation: O\x means 0 'without' x (i.e., O\z(x) = x). Also, free(M) denotes the
free variables of A-term M, dom(0) represents the set of variables bound by substitution 0,
and ran(O) is the set of A-terms to which substitution 0 maps dom(0). One substitution V,
is said to be an instance of another 0 if for all M, there exists a further substitution a such
that OM = aOM - i.e., 0 is more general (or less defined) than 4k).
Finally, we say that a given substitution o, is minimal, or most general, with respect to a
particular set of conditions, if 0 satisfies those conditions, and if for any other substitution
4' also satisfying those conditions, 'P is a instance of 0.

The inference system. In order to more accurately speak about the state of a logic
programming interpretation, we use P 1-e G to denote that G may be solved under P with
a particular substitution 0. Figure 3.4 contains a list of inference rules formally defining the
IV relation. Following the structure of the abstract interpreter presented within §3.4.2, the
inference system is 'goal-based' - the solution of a particular G-form (below the line) is
reduced to the solution of one or more subgoals (above the line). For example, the rule

P 1o G OP V, OG2
P oVe G1 , G2
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SI- true

P -e G1 WP 1-,P 0G2
PI 1-0,,P G 1, G 2

? o G-G1  OI G2

P5- G1;G2 P Ie G; G2

P I- Vx:T. GC where y free(0G), p free(GP),
and y V dom(0)

PFoGy

P I-e\v 3z: r. Gx where p free(0G), and p V free(GP).

{D} u P Ve G
PIl-o D= G

(VX. Axr 4= Gx) E nf(P) OoxAx = OA O P OOxGx

where dom(ox) C ,
dom(O) n X = 0,
and oa & 8 are most general.

Figure 3.4: Inference rules for AProlog.

describes the reduction of a conjunctive goal (G1 , G2) into two subgoals, where G, is solved

with substitution 0, and then 0 is applied in the solution of G2. Similarly,

PI- GY

P Fe Vz :r. Gx where y V free(0G), y 1 free(0P), and y V dom(0)

specifies that Vx: r. Gx is reduced to solving Gy for any y (since y is not bound by any
substitution and does not appear free in 7).

While P I-e G pertains to the particular inference system being defined, we use P I- G to
instead denote that that there generally exists an intuitionistic proof of G given P. Logic
programming is intuitionistic or constructive in nature [87, 86]: for example, P F G1 ; G2

only if either P IV G or P V G2 . This disallows the derivation of classical tautologies such as
- p ; -p and I- (p = , q) =: (-'p ; q). (The -' operator stands for logical negation, which is

not currently supported by AProlog.) The restriction to an intuitionistic system (as opposed
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to a classical one) is so that the logic admits an effective proof procedure such as 1-. In fact,
D-forms are restricted from containing disjunction (;) and existential quantification (3),
precisely because of the difficulty in giving an operational interpretation to such clauses.8

3.7.1 Soundness

The inference system V defined within Figure 3.4 is correct, or sound, in that only valid
goals may be inferred: that is, P t-0 G entails OP I- 0G. The soundness of - may be proved
by a straightforward induction (albeit tedious) over an arbitrary derivation P V6 G. More
precisely, given P -e G, we seek to show that OP I- 8G by induction over the sequence of
inference steps used to establish G:s

Basis.

Trivially, P 1-0 true implies OP F- true.

Induction step: if P -e G, then OP F- OG. Proof is by cases.

Given P F-q G 1 , G2.
By definition, P V90 G1 and OP 1-, OG2.
From the ind.hyp. (i.e., the induction hypothesis), OP I- OGI and O4,OP F- iOG2.
Since ?bOP 1- 0bOG 1 follows from OP - OG1 , OOP F- (OOG 1 , ikOG 2).
Hence bOP I- O(GI , G 2).

Given P -e G 1 ; G2.
By definition, P Ii-. G1 or P V e G2.
From the ind.hyp., OP - OG1 or OP I- OG2.
Hence OP I- (OG1 ; OG2), and then OP F O(G1 ; G2 ).

Given P1 o Vx. Gx.
By definition, P ll-s Gy where y free(OG), y free(OP), and y i dom(O).

From the ind.hyp., OP I- OGy.

Since y 0 dom(O), O(Gy) = (OG)y.
By universal generalization (applicable because of restrictions),

"For Horn logic and even higher-order Horn logic, intuitionistic and classical provability coincide [86], so
the by-word 'intuitionistic' is only important for logics extended with embedded implication and embedded
universal quantification, such as AProlog.

9A thorough soundness argument would also require that we establish the valialLy of A-term substitvtion
and Oiq-conversion. Instead, for the purposes of this discussion, we take as given that the underlying simply-
typed A-calculus operations preserve the soundness of t-.
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OP -Vx. (OG)x for new variable x,

Hence OP I- OVx. Gx.

Given P I-\, 3x. Gx.
By definition, P Fe Gy where y V free(0G) and y V free(GP).

From the ind.hyp., OP -OGy.
From the restrictions on y, (O\y)P F ((0\y)G)(0y).

By existential generalization (again applicable due to restrictions),
(0\y)P -3x. ((O\y)G)x for new variable x.

Hence (0\y)P F (e\y)3 x. Gx.

Given P I- D =. G.
By definition, {D} U P IFe G.
From the ind.hyp., {OD} U OP I- OG.
By implication introduction, OP -OD =. OG.
Hence OP - O(D =* G).

Given P I,0 A.
By definition, there exists D E nf7(P) such that

D = (VX. Ax = Gx), OaxAx = OA, and OP 1-v, OaxGx,
dom(ax) C X, and dom(0) nl X = 0.

From the ind.hyp., OOP "0 oxGx. (1)
Since D E nf7(P), it follows that P - (VX. Ax 4- Gx),

which in turn has instance OkOP - iO(VX. Ax 4= Gx).
(This step relies upon the validity of our normal form mapping;
i.e., that for all D' E nf(P), it is necessarily the case that P -D'.)

By universal instantiation (via ax), it follows that OOGP F- Gox(Ax '= Gx),
and then by distributivity of substitution, OO G - OaXAx 4- OGox-X. (2)

By modus ponens over (1) and (2), OGP i- iObuxAx.
From the definition, OaxAx = OA.
Hence OOP F- t- ¢A.

3.7.2 Completeness

The dual theorem of soundness, completeness, typically fails for logic programs: even if
OP F" OG, the interpretation may fail to terminate in attempting to solve G. The source of
this incompleteness is (1) the depth-first search of the logic programming paradigm, which
may lead to infinite recursion in the solution of an otherwise valid goal (by selecting the
'wrong' branch af a disjunction or the 'wrong' clause from the program), and (2) AProlog's
higher-order unification. One may, instead, speak of nondeterministic completeness - that
is, given nondeterminism for logical and unification choice points, the remainder of the task
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is complete. In fact, the inference rules of Figure 3.4 are nondeterministically complete as
they make no commitment to order of evaluation. As this result is not particularly relevant
to this thesis, we refer the interested reader to a similar discussion in Miller et al. [86].
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Chapter 4

Explanation-Based Generalization

4.1 Generalization

Generalizations may be strictly syntactic, such as the replacing of a subexpression with a
variable, or generalizations may be arbitrarily 'deep' semantically, such as making a rule
applicable to a new set of situations. The space of possible generalizations is limited only
by the expressiveness of the language in which results are phrased. For our purposes, the
language of expressions and that of generalized expressions are one and the same - AProlog.

Inductive vs. analytical generalization. One class of approaches to the generalization
problem is characterized as inductive or similarity-based [1, 30]. Similarity-based methods
examine a set of instances of the desired concept. Typically, syntactic operations are then
employed to derive a generalization covering those instances: e.g., a pattern that matches
each of them. Moreover, similarity-based approaches often make use of negative examples
(i.e., examples that are not instances of the desired concept) to keep the result from becoming
over-general. We further discuss the inductive paradigm within §4.8.

The alternative approach to generalization is analytical. Analytical methods determine what
and how to generalize by employing a theory of the problem domain. As a result, analytical
methods generalize from a single example, rather than from the multiple instances required
by inductive paradigms. To date, work on analytical techniques relies predominantly upon
the mechanism of explanation-based generalization (EBG) and its variants [95, 25, 92, 40].
EBG abstracts a particular problem solution (i.e., a proof or explanation), yielding an en-
capsulation of that solution - that is, a derived rule that more efficiently solves the original
as well as related problems. While the proof-based generalizations of EBG are necessarily
valid (with respect to the domain theory), similarity-based generalizations are guaranteed
only to the extent that they cover the given examples.
Because the generalization space tends to be very large for any sufficiently rich language,

similarity-based methods frequently employ a bias to determine how to generalize. (The
simplest bias is to restrict the language in which results may be expressed.) One view of this
bias is that it provides an analytical component to an otherwise similarity-based technique.
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When this bias is so strong that a single example is sufficient for generalization, the method
becomes analytical. Of particular interest currently is the combination of inductive and
analytical methods [65, 114].1

Logic programming. Recently, logic programming has been used as a foundation for
EBG [71, 108, 64, 8]. When explanation-based generalization is realized within the logic
programming paradigm, the derivation of a goal produces as a byproduct the most gen-
eral goal and the sufficient conditions for which the same sequence of proof steps (or logic
programming search path) would apply. One argument put forward in favor of the logic
programming framework is that it admits a common representation for all aspects of EBG:
domain theory, training instance, query, derived rule, operationality criteria, etc. (These
concepts are defined later in this chapter.) This helps in explicating the underlying princi-
ples in a uniform way and clarifies semantic issues.

One of the primary contributions of this thesis is the development of higher-order EBG,
which is realized within the framework of AProlog. Our formulation of EBG is also unique
in that it employs the modal logic operator 0 to express the bias upon which EBG is founded.

4.2 First-order EBG

This section introduces first-order EBG within the logic programming framework. As it also
introduces concepts unique to our formulation of EBG, it should be worthwhile even for
readers familiar with the topic.

We begin by briefly illustrating explanation-based generalization with a first-order example
from DeJong & Mooney [25, pp.158-166]: (We apologize to any readers offended by the
morbidity of this example, but it has become standard in the literature.) EBG divides the
theory of the problem domain between a domain theory, which we also denote with D:

kill a b 4- hate a b, possess a c, weapon c.
hate w w -- depressed w.
possessuv 4- buyuv.
weapon z 4- gun z.

and a training theory or ":

depressed john.
buy john obji.
gun objI.

Both V and T are composed of AProlog clauses. For readers familiar with EBG, T roughly
corresponds to training instance. Justification for the new terminology is given within §4.3.

1Hirsh, for instance, couples explanation-based and similarity-based methods by using version spaces (an

inductive technique developed by Mitchell [931) to generalize the results of EBG [65].

39



kill john john

kill a b hate a b,
possess a c, weapon c.

(a = john, b = john)

hate john john possess john c weapon c

hate w w 4= depressed to. possess u v 4= buy u v. weapon z -= gun z.

(to = john) (u = john, v = c) (z = c)

depressed john buy john c gun c

depressed john. buy john obj 1. gun obj I.

(c = objl) (c = objl)

Figure 4.1: First-order proof.

kill xy

kill a b -# hate a b,
possess a c, weapon c.

(a = z, b = y)

hate x i possess x c weapon c

hate to to 4 depressed w. possess u v o= buy u v. weapon z €= gun z.

(W =z=y) (U = z,v =c) (z=c)

depressed x buy x c gun c

Figure 4.2: First-order generalized proof.

The EBG algorithm is additionally provided with a query, or goal, such as

? - kill john john.

EBG then requires a proof that solves the given query. Within the logic programming
paradigm, such a proof may be expressed as a trace of AProlog computation. A proof of the
above query is illustrated within Figure 4.1. Goals of the proof are underlined, while the
program clause that reduces a particular goal appears underneath. In the course of applying
each clause, its variables may be unified with constants or variables of the goal, resulting in
the given unification constraints (enclosed in ')').

EBG generalizes this explanation to produce an encapsulation of the employed proof strategy.
In Figure 4.2, a generalized proof is constructed that corresponds to the original, except
that clauses of 7 (or T-clauses) are omitted. This forms EBG's bias in the generalization
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space: the proof of the given query is generalized by abstracting steps involving clauses of
the training theory. At the root of the new proof is a generalized query, which may be
derived from the original by replacing each of the first-order constants with a variable: the
goal kill john john becomes the general goal kill x y. Clauses of D (or D-clauses) applied
in the first proof are correspondingly applied in the second. This restricts the outcome
by propagating unification constraints through the proof (e.g., kill x y becoming kill x x).
Leaves of the generalized proof (e.g., gun c) correspond to subgoals of the original proof that
were derived from T. These leaves are accumulated in a conjunction of conditions sufficient
to establish the generalized query:

kill x x ,= depressed x, buy x c, gun c.

We will frequently refer to the resulting proof encapsulation, as a derived rule, or as an
explanation-based generalization, or simply as a generalization.

4.3 Modal Logic

Our formulation of EBG depends upon the separation of V and T, since only rules of
the former are incorporated within generalized proofs. To differentiate the two, we prefix
D-clauses with the 0 operator, which is borrowed from modal logic - logics in which
propositions have multiple levels or modes of truth, such as 'may be' and 'must be.' 2

We illustrate our use of 0 on the first-order example of §4.2. ) and T, which constitute the
logic program, may now be jointly expressed as

O Va Vb Vc. kill a b = hate a b, possess a c, weapon c.
O VW. hate w w 4= depressed w.
DVuVv. possessuv = buyuv.
0 Vz. weapon z 4= gun z.
depressed john.
buy john objI.
gun obji.

The above presentation does not rely upon AProlog's implicit universal quantification of a
program's logical variables. This is because our EBG algorithm differentiates between the
clauses 0 Vx. D and Vx. 0 D. (The motivation for this distinction may be found in §8.9.)
However, since explicitly specifying quantifiers can become exceedingly tedious, we introduce
the '! !' shorthand to represent this universal quantification implicitly. The first clause of V
may then be expressed as

!! kill a b 4- hate a b, possess a c, weapon c.

And, for the query kill john john, the resulting explanation-based generalization becomes

!! kill x x #= depressed x, buy x c, gun c.

2For an introduction to modal logic, see Chellas [16].
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kill x y

!! kill a b 4= hate a b,
possess a c, weapon c.

(a = x, b = y)

hate x y possess x c weapon c

!H hate w w 4= depressed w. 1! possess u v 4= buy u v.

(w = z =Y) (u = Xv= c)

depressed x buy x c

Figure 4.3: Less specific generalized proof.

Traditionally, the modal operator 0 (sometimes called 'L') precedes necessarily true sen-
tences, or equivalently, those true in 'all possible states' or at 'all times.' Non-prefixed
sentences axe only contingently true, true in the 'current state' or at the 'current time.'
Our incorporation of 0 is founded upon a correspondence between (1) EBG's separation of
domain and training theory and (2) modal logic's separation of necessary and contingent
truth: Because the validity of the generalizations derived through EBG depend solely upon

, more stringent truth requirements are placed upon V-clauses - namely that they be true
in all possible configurations of the problem space being modeled. Clauses of T, as they
are excluded from generalized proofs, can safely be revised or removed without invalidating
the derived generalizations (e.g., depressed john becoming false). Such revision could be
explained semantically as 'changing states' or 'switching worlds.' 3

Suppose that within the suicide example, we remove the 0 from the clause weapon z 4= gun z.
This results in the generalized proof of Figure 4.3, and the generalization

!! kill x x .- depressed x, buy x c, weapon c.

The above rule is more general than the previous one, but its application requires more
computation. This illustrates the trade-off inherent in the partitioning of V and T: V-clauses
get 'compiled into' the rules derived through EBG, while 7T-clauses must be evaluated at
'runtime' (the time of application).

Now suppose instead that we replace the last clause with 0 gun objl, again within the
original example. This has the effect of 'anchoring' the generalization to objI, with the
result of an identical query being the generalized proof of Figure 4.4 (whose rightmost branch
is solved), and the generalization

!! kill x x -# depressed x, buy x objI.

3Readers familiar with EBG may wonder how the concept of operationality relates to V and T. We defer
this discussion until §4.5.
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kill x y

!! ka b= hate a b,
possess a c, weapon c.

(a = z,b = y)

hate x y possess x c weapon c

!! hate ww !! possess u v 4= buy u v. !! weapon z =gun z.
4- depressed w.

(w = X = Y) (u = Xv = c) (z =C)

depressed z buy x c gun c

!! gun objl

(c = objl)

Figure 4.4: More specific generalized proof.

By moving a clause from T to V), we make the resulting generalization more specific. Such
a shift is, however, dangerous in that the generalization then depends upon the validity of
gun objl. In another configuration where objl is not a gun, the derived rule is false!

0 may also be used in the query language to determine the 'necessary' truth of a goal G,
but this is less likely to yield interesting generalizations as the proof of 0 G is composed
solely of D-clauses (and is therefore isomorphic to the generalized proof). Nevertheless, the
derived rule may be a generalization in that constants of G are abstracted.

Training instance. Previous realizations of EBG have used the term 'training instance'
rather than our 'training theory' T. While the literature makes the same operational distinc-
tion of excluding training instance from generalized proofs, the term additionally carries the
connotation of embodying a single example situation from which the learner should general-
ize. We have taken the liberty of renaming the training instance to avoid that connotation.

Typically within logic programming implementations of EBG, atomic clauses are directly rec-
ognized as belonging to the training instance [71, 64, 108] - e.g., gun objI. Although this
notion of training instance offers some intuitive value, we find it artificially restrictive. There
exist atomic clauses that we might want to include within V: ! ! adjacent x x.4 The same is
true even for constant atomic clauses: for example, to represent that block1 is glued to the
table we could assert 03 on blockI table. Alternatively, we might want to include variables
and logical connectives within T-clauses: for example, under the temporary condition that all
blocks are stacked in two-high pairs, we might assert VxVy. on x y =: (clear z, on y table).
o fuithermore affords the potential to intermix knowledge of the domain and training theory
through the nesting of 0 below the top-level of clauses.

"To accomplish this, some EBG systems employ the trick of writing the clause as adjacent z z t= true.
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Our use of 03, then, avoids what we believe to be undue limitations on the training instance:
our training theory may instead contain arbitrary AProlog clauses. 0 provides an underlying
limit to the generalization by allowing overly specific knowledge to be excluded from the
derived rules. Within a nonmonotonic logic, for example, such a mechanism could guarantee
validity for the resulting generalizations by distinguishing the fixed theory from temporal
assertions. In addition to providing greater expressiveness, a modal logic representation for
the distinction between V and T can be given a clear semantics that is independent of a
particular search procedure or generalization algorithm.

Modal logic and EBG. Admittedly, the analogy that contingency is to necessity as
training theory is to domain theory is philosophically questionable. The basis for our incor-
poration of 0 is rather that the operator elegantly models the difference between T and V
in a formal (as opposed to an operational) manner - that is, through a formal language
and the accompanying proof system. Our use of the terms 'contingency' and 'necessity' is
meant to convey some semantic intuition about why 0 models this distinction. One could
easily turn this observation around and say that we have found yet another interpretation
of 0.5

The inclusion of 0 within \Prolog leads to a rich language for higher-order EBG - A0Prolog.
The remainder of this chapter continues the discussion of modal logic and higher-order EBG;
within Chapters 5 & 8 we further develop and formalize A0Prolog.

4.4 Higher-order EBG

In Chapter 3 we made the case for the additional expressiveness afforded by higher-order
language, and in particular for AProlog. Expressive elegance is intimately tied to effective
generalization: If knowledge is represented in an inappropriate language, then it is less likely
that the desired generalizations can be expressed in a natural and concise manner, and also
less likely that they can even be found. In particular, the cumbersome encoding of higher-
order domains within first-order languages inhibits reasoning and generalization. But to
date, the application of EBG has been limited to first-order languages. To facilitate EBG's
application to higher-order domains, we extend the technique to higher-order explanation-
based generalization - that is, EBG in which functions and predicates as well as first-order
constants may be abstracted, or replaced with variables.

We would like to assert more - namely that first-order encodings are inadequate for the
task of generalization over higher-order domains, in particular because primitive syntactic
manipulations inevitably intrude into the generalizations. This is, however, simply one
aspect of the open argument between first- and higher-order languages (§3.3).

'There are already many such interpretations: 0 can stand for 'formally provable', or for truth in all
reachable worlds in a Kripke semantics [69], etc.
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We introduce higher-order EBG with another example frequently exploited within the lit-
erature, that of symbolic integration. Calculus integration is fundamentally a higher-order
domain in that the items being manipulated are functions, and functions and variables that
range over functions are not naturally part of a first-order language. Consider the follow-
ing higher-order rules for integration: the first treats exponentiation, the second extracts a
constant factor, and the third splits a sum. The predicate intgr relates a function to its
indefinite integral. To increase readability, we use a mathematical notation for arithmetic
operators not included in AProlog - in particular, exponentiation and division.

I: intgr (Ax.Xa) (AX.x*+/(a + 1)).
U intgr (Ax.a * fx) (Ax.a *hx) .: intgr f h.
! intgr (Ax.fx + hx) (A.fz + h'x) : intgr f f, intgr h h'.

intgr cos sin.

The traditional binding notation of dx has been replaced with -terms. Missing from the
first rule is the restriction that a 5 - 1, because AProlog does not admit constraints other
than those imposed by unification. 6 Readers may find the last rule more intelligible in its
q-expanded form intgr (Ax. cos x) (Ax. sin x). The cosine rule is an example a T-clause
that is not 'contingent': while the rule is just as valid as the others, it represents a proof
step we wish to abstract under EBG.

The query

? - intgr (Ax.3 * x2 + cos x) h.

yields the solution

h = Ax.3 * x2+1/(2 + 1) + sinx

and the generalization

I I intgr (Ax.a*xb+fA) (A.a*xb+l(b+1)+ fx) . intgr f f'.

The proof and generalized proof associated with this example are given in Figures 4.5 and
4.6, respectively.

The generalization space of higher-order EBG is significantly larger than that of first-order,
in that higher-order constants are additionally subject to variable replacement: consider that
in the first-order case of Figure 4.2, the goal kill x y is fully general, while for higher-order,
a single variable G ranging over goals is fully general. Also unlike the proofs of §4.2 & 4.3,
the integration proofs make use of higher-order unification, which implicitly enforces the
restrictions placed upon free and bound variables: for example, within an application of the
power rule, Ax.,a will not unify with Ax.x' since a may not contain free occurrences of x.
What is more, function variables may in this way appear in the derived generalizations (e.g.,
f).

6For a discussion of logic programming with constraints, see Jaffar & Lassez [70].
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intgr (Ax.3 *x 2 +COS X) r

!! tgr (Az.gz + fx) (Ax.g'z + f'x)
4=-intgr g g', intgr f f'.

(g = A.3 *x 2 , f-=cos, r = A.g'a + f'z)

intgr (Ax 3* x2) g'1 intgr cosf

! ! intgr (Az.a * h) (Ax.a *h'x) 4-- intgr h h'. intgr cos sin.

(a = 3, h = Ax x2 , g' = Ax.a * h'x) Uf sin)

intgr (Ax x 2) h'

!irztgr (Az.xb') (Ax.xb+l/(b + 1)).

(b = 2, h' = Ax xb+ll(b + 1))

Figure 4.5: Higher-order proof.

!intgr (Ax.gx + fx) (Ax.g'x + f'x)
4--intgr g g', iftgr f f'.

(G = intgr (Ax.gx + f x) (Ax.g'z + f'x))

intgr (Ax.a * hx) (Ax.a * h'x) -o- intgr h W'.

(g = Ax.a *hx, g' = Ax.a *h'x)

intgr h h

!! intgr (A\x.x') (Ax.z'+ 1/(b + 1)).

(h =AxZb, h' =Axxzb+l/(b +1))

Figure 4.6: Higher-order generalized proof.
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Related work. Donat & Wallen also address the step from first- to higher-order EBG
over the domain of symbolic integration [37). Higher-order generalization allows extremely
general rules to be extracted from particular problem solutions. Our work focuses on how to
control EBG to avoid over-general generalizations, and yet at the same time take advantage
of the higher-order nature of the language. Donat & Wallen's work concentrates on how
one could still usefully apply very general learned rules. To that end they introduce some
control constructs into the higher-order unification process.' In that sense our approaches
differ fundamentally.

Donat and Wallen's approach also utilizes a first-order representation of integrals (from
which they then produce higher-order generalizations). This first-order encoding requires
additional constraints, manifest in the constant primitive, which pervade their derived
rules and which are avoided under our higher-order encoding.

4.5 Operationality

We illustrated in §4.3 how 0 defines which proof steps are included in generalized proofs.
Within the EBG paradigm, the traditional means of restricting the extent of generalized
proofs is through operationality criteria: By establishing that a particular goal meets an
operationality criterion, the subtree deriving it is 'pruned' from the generalized proof. That
is, an operationality criterion can be viewed as a predicate that determines whether a given
goal should be a leaf of the generalized proof. The term 'operational' arises from the require-
ment that such subgoals be easily derivable, since operational subgoals must be established
(solved) in the course of applying an explanation-based generalization.

To illustrate, if we augment the original formulation of the suicide example (§4.3) with a
declaration that the goal weapon z is operational, the EBG algorithm produces the derived
rule

!! kill x z 4= depressed x, buy x c, weapon c.

This follows because the computation below the operational goal weapon z is herein ex-
cluded from the generalized proof. Thus, while 0 establishes which branches of the proof
tree will lead to antecedents in the derived rule (because they are established by contingent
clauses), operationality criteria determine to what depth to which the proof tree extends
within a branch."

Although 03 and operationality criteria are both mechanisms that limit the extent of gener-
alized proofs, the former is a property of clauses (i.e., whether or not they contain 0), while
the latter is a property of goals (i.e., whether or not they are operational).

7 in particular, they permit filter expressions to be defined to preclude trivial higher-order unifications;
for example, in matching f(a) = a + b, the instantiation of f = Ax.a + b might be less desirable than
f = Axz.z+b.

SKeller reviews existing formulations of operationality, and develops the topic significantly beyond its
treatment herein [72].
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Operationality criteria present the same trade-off we have seen for 0: the closer the oper-
ational subgoals are to the root of the generalized proof, the more generally applicable the
derived rule is, but also the more work is required to apply it. In fact, one reason that the
partition between domain and training theory has not received more consideration within
the literature is that the mechanism of operationality typically precludes any T-clauses from
entering into generalized proofs.

Operationality criteria, however, do provide features beyond the capabilities of 0. For
instance, they offer a generally more concise means to define generalized proofs: by declaring
only a single subgoal to be operational, the entire branch of the generalized proof underneath
is excluded, or pruned, from the generalization. Achieving the same effect with 3 alone
would require removing from V each of the program clauses applied within that branch.
Moreover, if a particular rule is used pervasively in a proof, it might be necessary to include
it within both V and T (and then use some form of additional control to discriminate between
occurrences.) Operationality criteria do not present a corresponding problem, as it is unlikely
that recurring subgoals should be considered both operational and non-operational.

o] does, on the other hand, offer a means by which to generalize in a entirely different
manner: consider that even interior steps can be abstracted from generalized proofs via 0.
We illustrate this with one last contrived perturbation of the suicide example:

kill a b .= hate a b, possess a c, weapon c.
!! hate w w .= depressed w.
!! possessuv v= buyuv.

weapon z .= gun z.
!! gunz 4= pistol z.

depressed john.
buy john obji.
pistol obji.

For the standard query kill john john, the above theory leads to the generalized proof in
Figure 4.7, and the generalization

!! kill z x 4= depressed x, buy x c, pistol c, (gun c =. weapon c).

Note that this rule allows the use of an arbitra-ily extended computation to establish the
subgoal gun c = , weapon c.

We conclude that the mechanisms of operationality criteria and 0 are complementary, and
while 0 is sufficient to formulate the examples presented within this dissertation, we do
not suggest it as a replacement for operationality criteria. In fact, the combination of the
two is particularly attractive: modal logic induces an underlying limit to the specialization
of derived rules that potentially prohibits EBG from yielding 'incorrect' generalizations.
Operationality criteria, in turn, provide a means to 'fine tune' selection from the space of
possible generalizations admitted by 0. This is particularly true of dynamic operationality
criteria - i.e., those which allow the operationality of goals to be defined and redefined
within the computational framework [64]. Since dynamic operationality criteria are subject
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kill x y

!! kill a b = hate a b,
possess a c, weapon c.

(a = z,b = y)

hate x y possess x c weapon c

!! hate ww !! possess u v 4= buy u v.
4= depressed w.

(w = X = Y) (u = Zv = c)

depressed x buy x c gun c

! ! gun z 4- pistol z

(z = c)

pistol c

Figure 4.7: Generalized proof with internal step abstracted.

to change, derived rules typically incorporate some representation of the utilized criteria to
insure their continued integrity. Through the use of 0, the need for these operationality
preconditions is reduced or eliminated because of tle guarantee of validity afforded by 0.

We further compare and contrast operationality and 0 in §6.4.

4.6 Partial Evaluation vs. EBG

As pointed out by Van Harmelen & Bundy [129], explanation-based generalization is closely
related to partial evaluation (PE). On the surface the two seem to be very different paradigms:
consider that EBG is a process of generalization, while PE is one of specialization. These
opposing definitions may be reconciled by considering two different views of EBG: The first,
and the one thus far articulated, is that EBG involves the generalization of a particular
solved problem (by abstracting those solution steps based upon T-clauses or those solving
operational goals). However, one may alternatively view EBG as as a specialization (or par-
tial evaluation) of V to the logic programming computation solving the given goal. In fact,
each of the explanation-based generalizations we produce could equally be derived through
partial evaluation.

In spite of this correspondence, the mechanisms by which PE and EBG produce results differ
in fundamentally important ways:

* EBG relies upon an example explanation - i.e., a goal and the accompanying solution,
while PE works from an unsolved general goal.
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* EBG employs a bias in the logic program (V vs. T and/or operationality criteria) to
determine the form of generalized proof, while PE utilizes some form of search control
to explore possible expansions of a general goal.

In short, EBG is a specialized application of partial evaluation in which search control is
provided by a particular example, the partition between V and T, and the operationality
criteria.

4.6.1 Other Work

Etzioni's thesis [41] considers the replacement, within the framework of Prodigy [92], of EBL
with Static, which instead uses a formal analysis of the domain theory incorporating partial
evaluation to derive new rules. For the domains he considers, Static generally outperforms
EBL; that is, through its additional analysis, his system is able to derive better rules. We are
skeptical, however, as to whether this approach can be effectively extended to intractable
domains wherein the domain theory itself is relatively small (e.g., a set of axioms), but
for which the space of possible partial evaluations (i.e., the closure of that domain theory)
is infinite. For such theoiies, some form of search control, such as is provided by EBG's
example, appears indispensable.

4.6.2 Example: "peval"

In this section we present a rudimentary partial evaluator for AProlog (not AProlog) because
it raises important issues in the difference between EBG and PE, and also because it will
be pertinent to later discussion. An unabridged partial evaluator, as well as an extended
example of partial evaluation, is included within Appendix A.3.

Figure 4.8 contains the code for peval, where its second argument is the result of partial
evaluating its first. The consequence of peval E G is that the derived rule E -t: G follows
from the program. (The new class E stands for AProlog logical expressions that are both
clauses and goals - i.e., E = D ni G. If the potential result of PE, E 4 G, is actually to
be added to the program, then E must additionally be a legal D-form.)

Search control is provided by the user, who determines (1) whether PE is to continue at
each atomic goal Ga (via stop?), (2) whether a particular applicable rule from the program-
base is to be applied in the solution of Ga (via apply-rule?), and (3) which branch of
an alterr-ition to partially evaluate (via left?).9 The predicate hyp is used to enumerate
clauses of the program-base. ° These clauses are assumed to be in normal-form Dnf, which
we defined in §3.6.

9Within AProlog's input predicate read Az.Gz, the variable z is bound to the entered term before
execution of read's body Gx. read Aq.q, then, provides a simple method for querying the user for a yes/no
(i.e., true/false) response.

1°The need for hyp is further discussed in §8.4.1.
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peval true true 4=!
peval (G1 , G2 ) (G3 , G4) 4= !,peval G1 G3 , peval G2 G4.
peval (G 1 ; G2) G 4 !, ((left? (G 1 ; G2), !, peval G1 G); peval G2 G).
peval (Vx. Gx) (Vx. Giz) €= !, Vx. peval (Gx) (Glx)
peval (3x. G) G, *= !, peval (Gy) G,
peval (D =* G) G1  !, norm-form D D1 , hyp D, #, peval G G1
peval Ga Ga € stop? Ga.
peval Ga G € hyp D, match-rule D (Ga .= Gs), apply-rule? D, peval Gs G.

match-rule D D1 €= match.rule.and D D 1

match-rule-and (D1 , D2 ) D 4= !, (match.rule-and D1 D; matcharule-and D2 D).
match-rule-and D D1  !, matchrule-pi D D1

match-rule-pi (Vx. Dx) D1  = !, match.rule-pi (Dx) D1.
match-rule.pi D D.

left? G €= write G, write-string "Left branch? ", read Aq.q.
stop? Ga .= write Ga, write-string "Stop? ", read Aq.q.
apply-rule? D t= write D, write-string "Apply? ", read Aq.q.

Figure 4.8: Interactive Partial Evaluator

4.7 Chunking vs. EBG

Yet another paradigm has been compared to EBG, this one coming out of Soar. "Soar is
an attempt to build a general cognitive architecture combining general learning, problem
solving, and memory capabilities" [112, p.561].11 Chunking is the learning mechanism of
the Soar architecture. Rosenbloom and Laird present the case that EBG is very similar to
chunking [112]. This correspondence may be expressed as the following mapping between
Soar and our logic programming formulation of EBG:

Chunking EBG

goal goal

problem state training theory

problem operators domain theory

chunks (new productions) derived rules

problem solution proof (logic programming trace)
backtraced & variablized
production sequences generalized proofs
whether productions for
a predicate exist operationality criteria

"For an introduction to Soar and chunking, see Laird, Rosenbloom, & Newell [74, 751.
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Soar solves problems at two-levels: Initially, learned rules of the production system are
employed. When this strategy leads to an impasse - i.e., no production solves the problem,

Soar reverts to the operators in the problem space (theory). Upon solving the goal within
the 'ground' problem space, Soar backtracks and 'variablizes' (i.e., generalizes) the problem
solving trace. The result is a chunk, or derived production rule, which, when added to the
production system, potentially speeds future problem solving. Soar's subgoals are assumed
to be 'operational' if there are pre-existing productions relevant to that subgoal.

Hopefully, this gross simplification of the Soar architecture has given unfamiliar readers a
rudimentary understanding of chunking. We include this discussion as it will be relevant to
future comparisons (§6.3), and further as it raises one problem with the application of the
existing Soar/EBG correspondence to our formulation of EBG - namely that the mapping
of T to a state space is not satisfying. The problem is that A0Prolog provides a more
expressive training theory than the training instance of typical EBG formulations. It is
unclear how \AProlog's enhanced ability to abstract proof steps maps onto Soar.

4.8 Inductive Generalization

Within this section, we further discuss, for the interested reader, some relevant inductive
methods of generalization. As this discussion does not bear on future chapters, it may be
skipped by those so inclined.

Anti-unification. Perhaps the simplest method of generalizing an expression is to abstract
a particular subexpression with a variable. This establishes a partial order of instance -
one expression is an instance of another if the former may be derived from the latter by
substituting terms for variables. The related process of unification, as discussed in §3.2,
determines whether there exists a substitution deriving a common instance from two or
more expressions.

We may also define the duals of these notions: anti-instance - one expression is an anti-
instance of another if the former may be derived from the latter by abstracting subexpressions
with variables, and anti-unification - the process of deriving a common anti-instance of two
or more expressions." In defining anti-unification, we would like to introduce the concept
of a least general anti-unifier (LGAU), analogous to the most general unifier (MGU) of
unification.13 However, just as higher-order unification does not admit MGU's, higher-order
anti-unification does not admit LGAU's:14 consider that the anti-unification of Ax.f(g(x))
and Ax.f(h(x)) yields Ax.f(F(g(x), h(x))) and Ax.F(f(g(x)), f(h(x))), again neither of

12Anti-unification was introduced independently by Plotkin [107] and Reynolds [109]. Dietzen & Scherlis
tentatively discuss anti-unification in program development under the name 'least general generalization' [33].
For another treatment of first-order unification and anti-unification, see Lassez, Maher & Marriott [76].

13Somewhat more formally, the instance relation forms a lattice on the expression language in which MGU
is the meet operator, and LGAU is the join [67]. (For an accessible introduction to lattices, see Stoy [125].)

14The higher-order case, then, does not admit a lattice since meets and joins are not unique.
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which is an instance of the other. Higher-order anti-unification is further developed within
Pfenning [105].

As it employs multiple examples, anti-unification is an inductive or similarity-based method
of generalization. While anti-unification itself only handles positive instances, the technique
may be extended to incorporate negative ones as well, which leads to Mitchell's version
spaces [93]. Version spaces potentially admit a higher-order treatment that is founded upon
higher-order unification and anti-unification. Indeed, this is an attractive area for research,
although higher-order version spaces are complicated by the lack of MGU's and LGAU's.

Generalizing logic programs. Anti-unification is strictly a syntactic technique, but there
are, of course, 'deeper' methods of abstracting expressions. In the case of logic programming,
one goal might be considered more general than another if it is true for a greater range of
instantiations to its variables. For instance, we could drop conditions from a conjunction:
(long x, wide x) becomes long x. Or we might add conditions to a disjunction: replacing
long x with (long z; wide x).1 s As we have remarked, although this disjunctive expression
is more 'general' (in that it is less specific), it is not any more 'abstract' (in that it is not
any less detailed). In fact, this is in some sense a trivial generalization, since arbitrarily
complex concepts may be described as disjunctive sequences (perhaps infinite) of specific
expressions. This same problem surfaces in higher-order anti-unification: the instances
long table and wide table could be trivially anti-unified to f (long table) (wide table),
or more succinctly to (f long wide) table. This result is considered 'disjunctive' because,
in the simplest case, f is instantiated to project either its first or its second argument.
Each of the above techniques of generalizing logic programs - abstracting expressions with
variables, dropping conjuncts, and adding disjuncts - can be exploited within inductive
paradigms, thereby leading to approaches such as Vere's treatment of first-order predicate
calculus [130] and Buntine's generalized subsumption over first-order Horn clauses [12]. The
extension of these paradigms to encompass AProlog is yet another interesting topic for study.

The application of inductive techniques. While not considered herein, similarity-
based techniques of generalization are, nevertheless, relevant to the overall vision of tools
for design-based problem solvers articulated in Chapter 2. For one, this is because inductive
reasoning is required for analogical problem solving; that is, similarity-based generalization
is a means by which an analogical correspondence can be established between a solved and
unsolved problem. The combination of this correspondence and the known solution serve as
a guide in the construction of a new derivation. Analogical problem solving in this manner
remains safe so long as the resulting derivation (for our domain, a logic programming proof)
can be 'replayed' to establish validity.

15For some further possibilities of generalization see Dietterich, et al. [30, pp.365-368].
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Chapter 5

The Extension of Logic Programs

In the previous chapter, we defined and illustrated the process of EBG. The resulting
explanation-based generalizations, however, are of little use unless we also provide a means
for assimilation - that is, for augmenting the existing logic program P with new rules. We
define learning, then, to be the combination of generalization and assimilation. But rather
than reserving the term 'assimilation' for the addition of clauses derived through EBG, we
instead use it to refer to the extension of P with arbitrary D-forms.
The design of an appropriate assimilation mechanism for \Prolog is complicated by our
desire that it have the following characteristics:

* Semantic simplicity. The designers of AProlog took care to cultivate semantic elegance
within the language. Therefore, we require that the language primitives we introduce
for controlling generalization and assimilation continue in the AProlog 'spirit'. Pri-
marily, this means that such mechanisms admit a declarative semantics, which should
permit guarantees such as "this additional assumption already follows from the pro-
gram." By 'declarative' we mean that the effects of a construct be readily scrutinized;
i.e., that the construct have a straight-forward definition which is easy to reason about.
Moreover, this declarative characterization should exist apart from any particular op-
erational interpretation (language implementation). (The distinction between declara-
tive and operational descriptions will be further developed as we progress through this
chapter.)

* Programmability. Any proposed assimilation mechanism should truly be 'programmable',
since we do not believe that automatic (i.e., uncontrolled) assimilation of derived facts
or generalizations is either practical or desirable. Under a naive approach to learning,
the underlying problem solving architecture produces and assimilates generalizations
in the course of solving each query (at least when learning is 'switched on'). Except for
the fact that explanation-based generalizations represent abstractions of computation,
this approach to learning is analogous to following the solution of every Prolog query
G with assert G. The resulting proliferation of clauses leads to increased matching
overhead, and then perhaps to impaired rather than improved performance. Conse-
quently, it generally becomes necessary that assimilation under such a paradigm either
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be selective (e.g., via some performance analysis) or involve the forgetting of those
derived rules only infrequently used.'
Confining generalization and assimilation to the underlying architecture is problem-

atic:

* To avoid the additional cost of producing generalizations and that of match-
ing against a proliferation of rules in the program-base, generalization should
be only selectively enabled (in our view, by the programmer, through the
programming language).

e The results of EBG should be subject to modification by the program be-
fore assimilation: for reasons we shall illustrate, it is often desirable for the
assumed clause to differ from the derived rule. Typically, this variation may
be expressed as a simple forward reasoning step.

Thus, we advocate an architecture in which generalization and assimilation are realized
through language features rather than as aspects of the underlying system (and therefore
inaccessible to programmer control). The resulting language, AProlog, is intended to
serve as an effective platform for programming higher-order applications relying upon
explanation-based learning.

In developing a more logical approach to explanation-based learning, we recognized the need
for more limited forms of generalization within AProlog. The limited generalization to which
we are referring is that of universally quantifying, or universally generalizing, existing free
variables. Within Prolog this is accomplished by assert, in that assert (p x) implicitly
universally quantifies x, effectively adding the clause Vz. p z to the program.

The logic programming predicates assert, retract, call, univ, and var may be characterized
as 'meta-logical', because they are concerned more with the manipulation of logic programs,
including the currently running program itself, than with the logic of the language.2 That
is, they function at a fundamentally different level - the meta-level, and therefore, are
typically defined only operationally (e.g., within an interpreter), and apart from the logical
foundation of language. This leads to problems in analysis and compilation (see [79], for
example).

In this chapter we provide a logical foundation to a class of applications previously requiring
assert. To that end, we propose the rule construct, which introduces a limited element of
forward reasoning into AProlog. rule allows us to program in a natural and declarative way
many meta-programming applications - e.g., memoization, partial evaluation combined
with reflection, and resolution - that heretofore relied upon extra-logical features.

Later, we develop an analogous construct, ruleebg, which also extends a program by one of
its consequences. The difference is in the consequence to be assumed: rule's assumption is

1For a discussion of these issues see Prieditis & Mostow [108, pp.496-497], Minton i91], and Donat &
Wallen [37].

2call G causes G to be solved; the AProlog equivalent is simply G. univ provides for the destructuring
of Prolog terms into a functor (predicate) and arguments; within AProlog, higher-order unification addresses
this task. var M succeeds if M is a logical variable and fails otherwise; there is no AProlog analog.
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derived through universal generalization, while rule-ebg's is the result of explanation-based
generalization. *

Although both of these constructs are proposed and applied in the framework of AProlog,
the underlying ideas are general, and thus relevant to other logic programming languages.

Other work. We briefly mention three efforts concerned with establishing a formal ac-
count of meta-level logic programming constructs: As discussed in Chapter 3, AProlog [100]
uses a fragment of higher-order intuitionistic logic, and gives a logical foundation for call
(through higher-order predicates) and some uses of assert (through embedded implication).
HiLog [17] uses an even narrower fragment of higher-order logic, and can give a declarative
account for many uses of univ and call. The language G~del [14] follows a different approach
by explicitly separating the meta-level from the object-level.

5.1 Existing Approaches to Extending Logic Programs

5.1.1 Prolog's "assert"

Prolog permits the modification of the current logic program through the primitives assert
and retract: assert D adds clause D to the program, while retract D removes D.3 The
following list characterizes the more frequent applications of assert and retract in Prolog:

e Memoization - To avoid the re-computation of previously solved goals, derived results
are memoized, or cached.4 Herein, the programmer must insure that assert is only
applied to goals deductively following from the original program P. We call this a
conservative extension of P. For example, the following definition of the Fibonacci
function will not recompute values (unless it backtracks after an initial solution):

fib 0 1.
fib 1 1.
fib m n = m>1, mlism-1, m 2 ism-2,

fib m2 n2 , asserta (fib m2 n2),
fib m, n1 , asserta (fib m, nI), n is nl + n2.

Memoization is a rudimentary form of forward reasoning - which we define to be any
paradigm in which a knowledge-base (in this case, a logic program) grows by computing
and assimilating facts that follow deductively. Although individual goals are derived
through the standard backchaining of Prolog, their assimilation represents a forward
reasoning step.

'Prolog implementations typically offer both asserta and assertz: the former effectively adds the clause
to the beginning of the program, while the latter does so at the end. For purposes of general discussion, our
use of assert encompasses both constructs.

4There is an inherent tradeoff in the application of memoization: the overhead of matching against a
proliferating set of program clauses can result in deteriorating rather than an improved performance.
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" Interaction memoization - This is an alternative application of memoization in which
a program queries the user for assistance, and then records the result of the interaction
with assert. Such extensions to the program are generally not conservative. See
Rowe [113, pp.126-127] for an example.

" Program reflection - Reflection is the mapping of the data structure representing a
program into an executable version of that program. (Its inverse - the mapping of
an executable into data structure for scrutiny or manipulation - is reification.) The
need for reflection arises when one wants to run a program constructed by another
program. Reflection allows the derived program to be executed directly, in that way
avoiding the inefficiency and complexity of interpreting a program datatype.

The results of partial evaluation (PE) represent one important application of reflec-
tion. In the context of logic programming, partial evaluation consists of deriving a
sufficient condition G for a particular query El; that is, PE produces a specialization
of the logic program ' that captures the computation leading from E to G. Through
use of the resulting derived rule E 4= G, we avoid re-doing the intervening computa-
tion. In §4.6, we introduced an interactive partial evaluator peval for AProlog. Rules
derived through peval could be assimilated with assert, as in the top-level predicate
pevaltop:

peval~top E 4= peval E G, asserta (E = G).

In §5.3.1 we show how reflection can be achieved declaratively with our proposed rule
construct.

" Retaining information across a failure - The assumptions made by assert extend
beyond a failure; that is, backtracking does not retract asserted clauses. This leads to
the using of assert as a means to communicate 'across' a failure, which we illustrate
through the coding of a bagof predicate. bagof produces a list L of every instance
that satisfies a given single-argument predicate P. The following implementation of
bagof exploits logic progiinming's backtracking starch to iterate over potential values
for P's argument x. assert and retract are used to maintain the intermediate values
of this iteration. 6

bagof P L 4= asserta (temp nil), fail.
bagof P L 4- Px, temp K, retract (temp K),

asserta (temp (x :: K)), fail.
bagof P L o= temp L, retract (temp L).

The first clause initializes temp - an accumulator for L. The second 'iterates' (via
backtracking search) over values of x that satisfy P, storing them within K. When no
more such x's can be found, the 'bag' is returned by the third clause.

5As introduced within Chapter 4, the class E stands for AProlog logical expressions that are both clauses
and goals - i.e., E = D n G.

"This encoding of bagof is a higher-order version of Rowe's [113, pp.236-238].
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* Mutable data - assert and retract additionally support the side-effecting of global
data structure. For instance, a breadth-first graph search may be implemented by
updating a fringe clause that contains the set of vertices currently on the fringe of
the search [113, p.234]. Similarly, assert could be employed to side-effect the graph
itself for computing, say, its transitive closure.

* Search control - assert and retract can be used to supersede Prolog's normal depth-
first search by hiding, reordering, or revealing clauses, or instead by setting global 'vari-
ables' to perform the same function. For example, Rowe describes a 'focus-of-attention'
forward reasoner which recalls facts (via a fact predicate) for forward-chaining and
then shifts them to 'used' status (by retracting fact and asserting usedfact) [113,
pp.137-140].

Of course, assert (in combination with retract) also supports more general instances of
self-modifying code, and is largely accepted as an important and necessary feature of logic
programming languages. The principle drawback of assert, however, is that it has no acces-
sible declarative meaning. Consequently, work on the semantics of logic programs typically
ignores it: consider that there is no straightforward means for incorporating assert/retract
within inference systems such as that defined in §3.7. And as a result, Prolog implementa-
tions behave inconsistently: Lindholm & O'Keefe [79, p.22] offer the example

p = assertzp, fail.
p = fail.

Whether ? - p will succeed or fail depends upon the semantics of assert: Given a goal to
solve p, should the set of relevant clauses be determined once for p's solution, or should it
instead be dynamically adjusted (following changes in logic program itself) in the course of
solving p. Under the former interpretation, ? - p fails, while under the latter it succeeds.
Given the more dynamic approach, there are still potential inconsistencies in the availability
of additions to the logic program. The alternative example

q 4= fail.
q 4= assertzq, fail.

behaves differently in some Prolog implementations: the Warren Abstract Machine [1321 -
an abstract interpreter forming the basis of several Prolog implementations - succeeds on
? - p and fails on ? - q.
For this and other reasons, AProlog does not include assert, although some of assert's
functionality is subsumed by another construct - embedded implication. However, as we
shall illustrate, embedded implication is neither powerful enough to support the above ap-
plications of assert, nor for that matter, to support the assimilation of explanation-based
generalizations. This lead us to explore the possibility of making logically motivated ex-
tensions to AProlog that address these deficiencies. In particular, we focus upon those uses
of assert above that involve memoization and reflection. The other illustrations of assert
are frequently stylistically questionable, and can often be reformulated without assert in a
manner no more complex and no less efficient. In any case, rule is not intended to subsume
the functionality of assert, but rather to provide a more declarative alternative for some
subset of its uses.
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5.1.2 Embedded Implication

It has been argued in the literature [83, 47, 9] that implication (with its intuitionistic mean-
ing) can, in many situations, be used in place of assert, and can also be given a simple
declarative semantics. The operational reading of embedded implication is that when solv-
ing the goal D * G, assume D while solving G. Thus without any program, the query

?- pl= px.

succeeds with the answer x = 1. The assumption of an implication is in effect exactly while
solving the consequent, and hence

? - (pl=pX), p y.

will fail, though

?- ((p1, p2)=:px), x=2.

succeeds after some backtracking.

Implication is of particular importance when we wish to make an assumption for a particular
computation and then 'forget' it. Consider a reformulation of pevaltop:

pevaltopEK 4 pevalEG, (E4#G) =* K.

The revised pevaltop takes two arguments: the goal E to be partially evaluated, and a
second goal K representing the context, or scope, for which the assumption E = G will be
valid. ('K' is for 'continuation', which is developed below.) The rationale behind pevaltop
is that the client has some computation (captured in K) for which a particular specialization
of the program E ,= G is applicable, yet he does not desire to make that optimization
permanent (since, perhaps, it impairs performance in the general case).

At first, it might appear that the following definition would behave identically:

peval-top E K 4= peval E G, asserta (E 4= G), K, retract (E 4 G).

However, the above is not equivalent to the preceding version. Suppose that the compu-
tation associated with K also makes extensions to the logic program. Should one of these
assumptions unify with E 4= G, P could be left in an inconsistent state. Such potentially
conflicting side-effects illustrate the difficulty in reasoning about programs that use assert;
that is, they illustrate the non-declarative nature of those programs.

In fact, assert and retract are sufficient to encode implication in general, subject to limi-
tations discussed below. The following uses assert and retract to establish the appropriate
assumption, even in the face of backtracking:'

(D =* G) # (asserta D; (retract D, fail)),
G,

(retract D; (asserta D, fail))

7This formulation is due to Stuart Shieber.
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where backtracking over the first conjunct retracts D, and backtracking over the third re-
asserts D (for G's solution). Of course, the above implementation does not address conflicting
side-effects, universal generalization (§5.1.3), or the precise scoping of the asserted clause
(§5.1.4).

5.1.3 Universal Quantification in Assumptions

In a Horn logic, all assumptions are closed: whatever apparently free variables occur in a
clause D are in fact universally quantified. Because of this, a Horn logic program cannot
change during its execution (at least, not without the application of meta-logical predicates
such as assert). As pointed out in Chapter 3, this is not the case for logics that include
embedded implication: assumptions therein added to P may contain logic variables that are
not copied when that clause is used. Instead, the program may actually change (through
variable instantiation) in the course of solving G. Thus, we distinguish between the assump-
tions p x and Vx p x. This is no great inconvenience: a clause occurring at the top-level in
a program (typically those read-in from a file) is still considered to be universally quantified
over its free variables, but no such convention exists for embedded implications.

This points out a manner in which implication is less powerful than assert: the former's
assumption is not universally generalized. For instance,

?- asserta(p x), p 1, p 2 .

succeeds in Prolog, while

?- px=>(pl, p2).

fails in AProlog: as one can see, there is no x such that p x implies both p 1 and p 2.
Operationally, what happens is that resolving p 1 with the assumption p x instantiates z to
1, and the now instantiated assumption p 1 does not unify with the second subgoal p 2. On
the other hand, the following clearly succeeds:

?- (Vx.p x) => (p 1, p 2).

It should be remarked here that this behavior of embedded implication is not a design
mistake, but has its applications, and, furthermore, is entailed by the desire to make only
logically sound extensions to basic Horn logic (for a further discussion see [83]).

This limitation of implication does illustrate a problem within the preceding formulation of
peval-top: a clause E 4= G derived by partial evaluation and then assumed (via implication)
can only be used with one substitution for its logical variables. We conclude that neither
implication nor assert is the proper mechanism for the situation as described.
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5.1.4 Goal Continuations

!mplication is also restricted in that its precise scope can limit the exploitation of its as-

sumptions. Consider another definition of Fibonacci which attempts to exploit implication
for memoization:

fib 0 1.
fib 1 1.
fib m n -= In>1, mIisIn-1, m2 ism-2,

fib M2 n 2, fib M 2 n2 =: fib mn nl, n is n + n2.

The problem here is that fib's assumptions are not uniformly visible: consider a recursive

trace of fib as a binary tree, where the computation of the nth Fibonacci Fn is reduced to
that of F,.-2 and Fn-, with Fn-2 known for the latter:

Fn
F.-2  F.-2 * F._1

F.-4  Fn. 4 4- F.-3  F.-3  F._3 * F.-2

So in the recursive computation of F,,.., the only pending assumption is that of F- 2, and
hence F- 3 must be re-derived. Thus, while the above performs considerably better than a

similar program without implication, the original version using assert is substantially more
efficient (linear).

This problem can effectively be circumvented by reformulating the program in continuation-
passing style (CPS) [110], which the reader may have encountered in the context of functional
programming. To realize CPS under AProlog, we add another argument K (a goal) to our
predicate. This goal is intended to represent the remainder of the computation, and thus
rather than returning control upon success, clauses invoke this 'goal continuation.' In this
way, accumulated assumptions are made available to extended computations. The following
formulation of fib makes use of CPS:

fib m n €= fib 1 m ntrue.
fib 1 0 1 K = K.
fib, 1 1 K = K.
fib1  m n K = m>1, mIism-1, M2 ism-2,

fib, 2 n2 ((VK'. fib1 M2 n2 K' 4= K') =

fib 1 mi ni ((VK'. fib, m nj K' o- K') =. (n is nj + n2 , K))).

While this illustration may be somewhat inscrutable to those not acclimated to CPS (higher-
level notations would be helpful), the underlying intuition is not that difficult: K captures
the computation necessary to solve a pending fib 1 calculation. In that regard, it acts as
an accumulator for the pending subgoals of that computation. Within the last clause,
fib 1 M2 n 2 is computed, and then the program is extended with the assumption that for any
K, fib 1 m 2 n2 K reduces to K (since m2 and n 2 have been instantiated to particular values).
In this way, fib1 m 2 n 2 need not be re-calculated by any computation nested within K.

Our motivation for this digression into CPS is that it is a powerful mechanism through which
implication (and later our extension, rule) can be more fully exploited within AProlog.
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5.1.5 Persistence of Assumptions

A further limitation of implication's well-defined scope is that there does not appear to be a
means for making assumptions persistent. eLP (our AProlog implementation) circumvents
this with no loss of elegance by allowing the programmer to initiate a new top-level interpre-
tation via the special goal top (introduced by Pfenning), which recursively invokes a new
AProlog listener, thereby effectively 'globally' extending the existing logic program with any
pending assumptions, such as within fib 1 m n top.

5.1.6 Summary

We have seen that assert and retract are insufficient to program implication, due to the
lack of proper scoping and the possibility of conflicting side-effects. Conversely, we find that
there are three aspects of assert which axe difficult to model with embedded implication:

1. global accessibility of the asserted clause, although this can often be achieved using
continuation passing style;

2. persistence of the asserted clause, which has been addressed in AProlog with the special
predicate top; and

3. universal generalization of assumed clauses.

The last of the three, universal generalization, is the must problematic, because there is
often no way to program it short of completely reformulating the data representation.8 It
is also universal generalization which is addressed by our proposed rule construct. Since
rule resembles implication in that its assumptions are always given a limited scope, the
techniques employed in (1) and (2) will continue to be relevant for programming with the
new construct.

5.2 Lemma

We seek to address, in a declarative manner, embedded implication's inadequacy with regard
to universal generalization. To that end, in the section to follow we propose the rule
construct. Before we introduce rule, however, we first attempt to motivate that extension
with a less general counterpart, the lemma construct. lemma, which we later establish to
be a special case of rule, brings to light many issues relevant to rule's development.

8This is essentially the solution advocated by Burt ef al. [14].
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5.2.1 Prolog's "lemma"

The semantic inelegance of assert has lead to the consideration of other means by which
logic programs may be extended. One such alternative is lemma as described by Sterling
& Shapiro [124, p.181], which may be defined within Prolog as

lemma E 4= E, asserta E.

(Actually, Sterling & Shapiro's formulation is

lemma E 4- E, asserta (E 4= !).

which does not backtrack to other clauses if a lemma applies.)
lemma is more 'logical' than assert in that it only permits conservative extension - that
is, added clauses necessarily follow from the theory described by the logic program. We may
again reformulate Fibonacci as

fib 0 1.
fib 1 1.
fib m n 4= m>1, mlism-1, m 2 ism-2,

lemma (fib m 2 n2), lemma (fib ml nh), n is nI + n2.

5.2.2 A Scoped "lemma" Construct

Prolog's lemma takes a single argument - the goal E to be solved and then assumed.
We will now define an analogous lemma within AProlog. The new lemma more resembles
implication in that it gives its assumption a proper scope. AProlog's lemma, then, requires
two arguments: (1) the goal E to be solved and assumed, and (2) a goal K representing the
scope for which the assumption is valid, lemma E K may be informally characterized as

lemmaEK 4= E, (E'=> K).

where E' is a universal generalization of E.
To illustrate an application of this scoped lemma, consider one last reformulation of fib:

fib 0 1.
fib 1 1.
fib m n 4m M>1, mOism-1, m 2 ism-2,

lemma (fib m2 n 2 )

(lemma (fib m, n 1 )
(n is n1 + n 2 )).
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(This version suffers from precisely the same inefficiency as that relying upon embedded
implication. In fact, the two are equivalent. See §5.1.4.) As with embedded implication,
persistence can be achieved with lemma E top.

Yet lemma is in some ways more powerful than embedded implication. For example, new
clauses may be derived through lemma: from the program

child -of x y = parent y x.
parent x y = child-of y x.
ancestor x y 4= parent x y; (parent x z, ancestor z y).

we may derive the general goal

- child-of x y = ancestor y x.

for arbitrary (uninstantiated) x and y. lemma affords the universal generalization of such
variables: the goal

- lemma (child-of x y =* ancestor y x) K.

will assume the derived clause

Vx Vy. ancestor y x 4= child-of x y.

before attempting the solution of K. In this way, lemma supports the extension of the
program with new universally quantified clauses that follow from that program. Implication
alone cannot universally generalize x and y.

The operational reading of P I- lemma E K is

Solve P I- E. If this fails, backtrack. Otherwise, it succeeds with substitution 0.
Let Y be the set of the free variables remaining in OE that do not appear free
in OP, and let VY stand for the universal quantification of each y in Y. Thus,
VY. OE is the universal generalization of OE over variables that do not occur in
OP.

Next solve

{Vy. OE} U OP IF OK

If this succeeds with substitution 0, then P F-e lemma E K.
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Declaratively, lemma E K is simply equivalent to (E, K), the conjunction of E and K. By
the declarative equivalence of two goals G1 and G2, we mean that the given goals follow from
the same logic programs and are satisfied by the same substitutions - i.e., 0P I- 0G1 if and
only if 0P I- 0G 2.

An operational reading, on the other hand, considers the search behavior (e.g., ordering of
selections and backtracking) of a specific logic programming interpretation. As an example
of the difference, consider that tae Prolog goal once

onceG .4 G,!.

is declaratively the same as G: each is satisfied by similar substitutions and logic programs.
Operationally, however, the interpreter does not backtrack to find alternative solutions of
once G.

The purpose of lemma is to affect termination and efficiency without affecting provability:
lemma controls search by selectively expanding the program. This expansion is through the
assumption VY. 9E. The savings afforded by lemma is simply that rather than successively
re-deriving and re-instantiating E, it is derived once and then universally generalized to
Vy. OE, so that the latter may be exploited in the solution of multiple goals. As 0E is neces-
sarily a consequence of P, VY. OE follows from universal generalization via the discharging of
logic variables not free in P. Without the forward reasoning step resulting in the assumption
Vy. OE, the solution of K could not even terminate. Even if ' - K succeeds, the discovered
proof is potentially much longer than that associated with {VY. OE} U 01' II- OK (as is the
case with fib).

Of course, lemma cannot be effectively implemented as

lemmaMK -= (M, M=K).

While this is a correct implementation in that it is equivalent to the declarative reading
(M, K), it does not realize the operational definition - i.e., it does not universally gener-
alize, and thus will offer the same performance as (M, K).

In fact, lemma cannot be programmed within the existing language, since AProlog affords
no means by which to universally generalize free variables. The universal generalization
step, which is required in the implementation of both lemma and assert, is problematic for
languages with embedded implication. Consider

?- px = lemma (p z) (p l, p2).

Since p x trivially follows from itself, the above might naively be expected to make the
assumption Vx. p x. But this does not follow from the program, since its declarative coun-
terpart

?- px #. (px,(pl, p2)).
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is not true and, in fact, fails in AProlog.

The problem of defining assert within AProlog is even more dramatic: consider that there
is no obvious meaning for

- 3xVy. q x y => asserta (r x y).

How can x and y be meaningfully quantified within a globally asserted clause? The difficulty
is that \Prolog goals are solved within the scope of a particular set of local assumptions and
variable bindings. They are not free to 'stand alone' as Horn clauses are. Our version of
lemma is reconcilable with AProlog because it too is scoped: lemma's assumption Vy. OE
is only valid within the scope of the deriving context - that is, is for the solution of K.
An unscoped assert, on the other hand, does not make sense for AProlog, because its
assumptions are expected to persist beyond the extent of the defining context.

5.2.3 Formal Definition

The operational definition of lemma may be formalized within the following inference rule
(a la §3.7):

P e E {VY. OE} U 0P I-,O , OK

P Fe lemma E K where Y = free(OE) - free(0P).

The preceding operational reading ensures that lemma will succeed only if its corresponding
declarative interpretation (E , K) is valid. This property, the soundness of lemma, may be
proved by induction on the definition of the IF relation (§3.7):

Given P Foe lemma E K, we must show that P F- (E , K).
From the definition of lemma, P F09 E, and then from the ind.hyp. OP F OE.
Let Y = free(OE) - free(OP).
Since OP I- OE and Y n free(OP) = 0,

it follows by universal generalization that OP - (VY. OE). (1)
Also from the definition of lemma, {VY. OE} U OP I-o OK,

and hence by the ind.hyp. O{VY. OE} U O'OP F- OK. (2)
By cut-elimination9 over (1) and (2), OOP F- OOK
Again from (1), ibOP F- OE.
And thus OOP I- OE, OOK.

9The rule of cut-elimination for F states that from P F- A and P U A F- B, we may conclude P F B.
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5.2.4 Alternative Realizations (Optional)

In order to achieve a correct realization of lemma, it is necessary to suppress the universal

generalization of variables free in P. Through embedded implication, then, the program

may contain (in a temporary assumption) a free occurrence of x, which invalidates lemma's

universal generalization over x. This can be remedied in two ways: we can either (1)
not generalize over variables free in an assumption (as per lemma's definition above), or
instead (2) collect each of the assumptions containing variables free in E Within an enabling

precondition (subgoal) of the lemma we create. For example, consider

?- pz = lemma (p x) (p l, p2).

For case (1) the derived assumption is p x, and for case (2) Vx. p x => p x, rather than the
incorrect Vx. p x. As a slightly more complex illustration, given only the program

q xy 4-- p ', p Y.

the query

? - p x =-. lemma (q x y) K.

would make either the assumption (1) q x z, or (2) Vy. q y y 4= p y, rather than the incorrect
Vx. qx x.

For our implementation of lemma, we chose the first solution, since it seems to be more
frequently useful. In fact, for most situations, (2) reduces to (1) since the only means for de-

riving the additional subgoal associated with (2) will be precisely via the initial assumption:
that is, to derive the precondition p y in the most recent example, presumably one would
need the local assumption p x.

Effectively determining which variables appear free in assumptions is a potentially thorny
implementation issue: given that there are a large number of pending assumptions, the
search required is not insignificant. Maintaining a list of such variables seems the natural
approach. Within §9.'.1 we discuss our implementation and its limitations in this regard.

5.3 Rule

5.3.1 Example: Partial Evaluation

Let us now return to the pevaltop example introduced in §5.1.1. Recall that the problem
with

peval-top EK .4- peval E G, (E 4 G) = K.
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is that the free variables of E 4= G are not universally generalized, thereby restricting the
applicability of the assumption.
Since E *-- G, though true, is typically not itself derivable as a goal (it is the result of partial
evaluation; not logic programming execution), the formulation

pevaltop E K 4= peval E G, lemma (E = G) K.

is not sufficient. Nor can we augment lemma with a local assumption such as

pevaltop E K -= peval E G, (E = G) = lemma (E 4= G) K.

because of the aforementioned restrictions placed upon variables free in assumptions. As
one last attempt, consider

pevaltop E K 4- lemma (peval E G)
(VE VG. peval E G =* (E 4-= G)) =*- K).

The reader might hope that this formulation would perform the partial evaluation, univer-
sally generalize the result, and then allow the result to be exploited through one additional
embedded implication VE VG. peval E G =o (E 4- G). The problem is that this impli-
cation does not make any sense under logic programming's backtracking search paradigm:
as discussed below, this clause has a variable head, and is hence applicable to any goal
whatsoever.

Operationally, what we would like to achieve for - pevaltop E K is

1. Solve II- peval E G. If this succeeds with a substitution 8, let Y be the logic variables
contained in OE and OG that do not occur free in any current assumption.

2. Assume (i.e., reflect) VY. OE = OG while solving OK; that is, solve

{VY. OE -G U OP I- OK.

Why is this a sound way of establishing OK? We need to make three crucial observations:

1. Since we quantify only over those variables which are not free in any current assump-
tion, we know that VY. peval OE OG is a logical consequence of the program for peval
(because of the logical rule of universal generalization).

2. The programmer knows that if peval E G, then E 4- G is a valid clause to add to
the program (assuming peval has been implemented correctly). This is expressed
declarztively within the aforementioned clause

VE VG. peval E G #- (E # G).

3. From a simple forward reasoning step, we conclude that VY. OE <= OG is true, and
hence can be safely assumed before solving OK.
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Trying to abstract from this particular example, we can see that we need two pieces of
information in order to carry out the operations described above: the original goal to be
solved - peval E G, and the general rule establishing the connection between this goal
and the assumption we would like to make - VE VG. peval E G = (E . G). In order to
properly scope assumptions, we also need to pass a goal continuation K as an argument.
This line of reasoning is embodied within our new construct rule. For pevaltop, the rule
invocation is

peval-top E K 4- rule (peval E G)
(VE VG. peval E G =* (E .= G))
K.

The forward reasoning supported by rule takes the form of a single forward-chaining step
(specified by an implication) that is under the tight control of the programmer. Intuitively,
that step is to solve the left-hand side of the implication, and, upon success, assume the right.
Such a step in the forward direction is generally incompatible with the backchaining of the
logic programming paradigm: consider if we were to include VE VG. peval E G = (E #= G)
within P, it would be applicable to any implicationa G-form. (In fact, after conversion to
normal-form, the given clause is applicable to any goal whatsoever.) Thus, this forward step
is of little practical value outside of the rule context.

5.3.2 The "rule" Construct

The general form of rule is

rule G (V. Gx =:, Dx) K

for goals G, Gx, K, and clause Dx, where X is a (perhaps empty) subset of the variables
free in Dx or Gx. To simplify the discussion, we assume that the variables in X do not
occur elsewhere.

Operational reading. The operational interpretation of

P- rule G (V. Gx =: DX) K

is as follows:

1. Find a minimal substitution axr' such that dom(ux) C X and oxGx = G. The ex-
istence of orx guarantees that the forward-chaining step is applicable. Should rX not
exist, fail and issue a diagnostic message.

1 Recall from §3.7 that a given substitution o, is minimal, or most general, with respect to a particular
set of conditions, if 0 satisfies those conditions, and if for any other substitution 10 also satisfying those
conditions, i is a instance of 6.
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2. Solve P I- G. If this fails, fail. Otherwise, it succeeds with some substitution 0.

3. Let Y = free(OG) - free(OP).

4. Let X' = X - dom(x).

5. Solve

{VX'Vy.OxDx} U 0' OP- OK

(Relying upon AProlog unification rather than explicit substitution, the preceding opera-
tional description may alternatively be codified as

1. Create new logical variables t for each universal variable in X, and then substitute

t for X in Gx and Dx, yielding Gt and De.

2. Unify G and G t.

3. Solve G.

4. Let Y = free(G) - free(?)

5. Solve (V,.VY. De) =: K.

VX is the correct quantification, since those variables of t which rule has instantiated no
longer appear free in D?.)

Declarative reading. The proper declarative interpretation for

rule G (VX. GM = DX) K

is simply

G, (VX. Gx*r Dx) = K

which, like the reading for lemma, makes no mention of universal generalization whatsoever.

The difference between the operational and declarative readings illustrate the savings pro-
vided by rule: Under the declarative interpretation, multiple instances of the same general
goal G must be solved in order to establish instances of G's consequent D. Operationally,
however, we need solve G only once, universally generalize, and then assume the universal
closure of its consequent D.
In fact, the reason fr'r explicitly including the VX, rather than just allowing the variables to
be free, is that it is required by the declarative interpretation: since it may be necessary to
repeat the application of the step VX.Gx :> DX, X must contain all variables that may be
reinstantiated during such successive applications.
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Note that VX. Gx =*" Dx, though true, is never used in the backward-chaining search of
the interpreter; only the result of the forward step is assumed. This is essential as the
clause one typically uses for this forward-chaining step is often hopelessly inefficient, or else
quickly leads to non-termination if used in the reverse direction. We have already given as
an example the step in the definition of pevaltop.

That it is the free variables of G, rather than those of D, which are universally generalized
is essential for correctness: consider

?- rule true (true = p x) (p 1, p 2 ).

which fails, as established be the invalidity of the declarative reading:

?- true, (true=:px) =: (pl, p2).

The following variation, on the other hand, should (and does) succeed:

? - rule true (Vx. true:* p x) (p 1, p 2).

and, as we would expect, its declarative reading behaves similarly:

?- true, (Vx. true=* px) =* (pl, p2).

5.3.3 Formal Definition

The above operational definition is formalized by the inference rule

PII-9 G a xGx=G {VX'VY. euxDx} U OP I- OK

P -p rule G (VX. Gx =, Dx) K
where dom(ax) X,
Ux is minimal,"
X" = X - dom('x), and
Y = free(OG) - free(0P).

As in the case of lemma, the above operational definition ensures that rule will succeed
only if its corresponding declarative interpretation is valid. This property, the soundness of
rule, is also proved by induction over the IV relation (§3.7):

Given 1' I-0,0 rule G (VX. Gx 4, Dx) K,
we must show that P -G and {VX. Gx . Dx} U P H K.

From the definition of rule, 1 1-e G, and then from the ind.hyp., 0P F- 9G.
Again from rule's definition, there exists ax such that axGx = G,

where dom(ax) C X and oA is minimal.

Thus 0P F- OaxGx.
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Let y = free(OG) - free(OP), and let X' = X - dom(ox).
By universal generalization, OP F- VX' VY. OorxGx.
By weakening, O{VX. Gx = Dx} U OP F VX' VY. OoxGx.
By universal instantiation (via cx) and A-introduction, it follows that

O{VX. Gx =* Dx} U OP - VX'Vy. OcrxGx, Ooax(Gx =- Dx).
And then by distributivity of substitution,

0{VX. GN =:. Dx} U OP F- VX' VY. OoxGx, Ocx Gx =, OaxDx
By modus ponens (rule application) and by induction over the preceding steps,

it then follows that O{VX. Gx =* Dx} U OP - VX' VY. O'rxDx. (1)
Also by the definition of rule, {VX' VY. OoxDx} U OP M-p OK,

and hence by the ind.hyp. O{VX' VY. OcrxDx} U O1 'OP F tOOK. (2)
Now by cut-elimination over (1) and (2), bO{VX. Gx = Dx} U 4OP F ObOK.

Incompleteness of "rule." The declarative reading of rule is not, however, equivalent
to its operational definition, as the declarative version may succeed where the operational
fails; that is,

P 1- rule G (VX. Gx Dx) K

does not imply

P - rule G (VX. Gx Dx) K

even up to the usual deterministic limitations of logic programming (Chapter 3). This is
because rule's assumption VX' VY. axyODX is typically less general than VX. ODx €: OGx,
and thus K may follow from the latter, but not from the former. But this is, of course, the
whole purpose of rule: to focus search by making use of a selected consequence (VX' Vy. crxyODx)
of the general assumption (VX. ODx -# OGx), which, by itself, may be too powerful to be
computationally useful.

5.3.4 Implementation Issues

AProlog constraints. In our discussion, we have thus far ignored a problem posed by
AProlog's higher-order nature: higher-order variables, in addition to being instantiated, can
accumulate constraints in the course of computation. These constraints are essential for
higher-order unification, and have to be represented in the forms manipulated by rule. The
actual form for rule's assumption is VY. a xyODx 4: 3Z. CZ, where Cz is the current set of
constraints, and Z represents all variables occurring only in Cz. A similar solution for assert
has been proposed for the more general constraint logic programming language CLP(R) 12

in [61]: the constraints are therein reduced, to as great an extent as possible to the variables
occurring in in the clause to be assumed, and then added as 'guards' to that clause. (See
also §9.2.2.)

12CLP(R) supports more general constraints such as those expressed within arithmetic inequalities [70].
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rtp 4- rule (infer R)
(IR. infer R # clause R)
(R = false; rtp).

infer R' 4= clause P, clause Q, resolve P Q R, simpl R R', (R ' = false; keep? R').

resolve (P; Q) S (P; R) = resolve Q S R.
resolve (P;Q) S (Q;R) € resolvePSR.
resolve S (P; Q) (P; R) € resolve Q S R.
resolve S (P;Q) (Q;R) = resolvePSR.
resolve P (not P) false.
resolve (not P) P false.

keep? R 4= write R, write.string "Keep? :", read AG. G.

Figure 5.1: Rudimentary Resolution Theorem Prover.

5.3.5 Example: "lemma"

Versions of our scoped lemma introduced in §5.2.2 may now be defined in terms of rule for
both the non-committing case:

lemma E K 4= rule E (YE. E = E) K.

and the committing:

lemma E K .= rule E (VE.E = (Es=!)) K.

5.3.6 Example: Resolution

Consider rtp, a rudimentary resolution theorem prover, given in Figure 5.1. The predicate
clause enumerates disjunctive expressions to be resolved, such as

clause (p x y; not (q y x)).
clause (q a z).

resolve blindly resolves its first two arguments, yielding a resolvent R, which is then sim-
plified by simpl (whose clauses may be found in Appendix A.1). To illustrate,

?- resolve (p x y ; not (q y x)) (qaz) R, simplRR'.

instantiates R' = p x a. To avoid infinitely re-deriving the same clause, the user is queried
by the predicate keep? to determine whether R' should be used or discarded. rtp succeeds
if it is able to derive a contradiction (R' = false). rtp first invokes infer, which produces
a resolvent of two clauses. If either R' = false or keep? R' succeeds (i.e., the user enters
true), infer R succeeds. rtp then makes the forward step infer R =: clause R, and as-

sumes the universal closure of clause R before recursively calling rtp. (A more complete
implementation of rtp may be found in Appendix A.2.)
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typeof (if E F H) A typeof E bool, typeof F A, typeof H A.
typeof (lam F) (A -+ B) 4= V:. typeof x A =* typeof (Fx) B.

typeof (appl F E) B .= typeof F (A -- B), typeof E A.
typeof (let E F) B typeof E A, typeof (FE) B.

typeof (fix F) A € Vx. typeof x A =: typeof (Fx) A.

Figure 5.2: ML Type Inference

5.3.7 Example: ML-style Type Inference

As a further application of rule, consider the example of programming ML-style type
inference, 13 as implemented by Hannan & Miller [58]. Some of the more interesting rules for
type inference are included within Figure 5.2. We are particularly interested in type infer-
ence over the ML let construct. We represent (let x = E in Fx) within AProlog as let E F,
where F is a A-abstraction. (This reverses the order of arguments used within Hannan &
Miller's representation.) Type inference for this construct can be captured by the following
AProlog clause [58]:

typeof (let E F) B 4= typeof E A, typeof (FE) B.

The problem with the above formulation is that the type of E is computed once (to insure
that it is indeed typable), and then thrown away. Instances of E are then re-typed at
each occurrence of x within A.Fx. This is necessary because the type of E, namely A,
could be polymorphic - i.e., contain variables such as the C -- C typing of the identity
Ax.x. Without this re-computation, a polymorphic E can only be assigned one typing (e.g.,
int -- int), since in the course of matching that type, the logical variable C would be

instantiated to int, thus preventing it from matching, say, bool -+ bool later.

Now consider another formulation

typeof (let E F) B -- Vx. typeof E A,

(VA. typeof x A # typeof E A) =: typeof (F x) B.

As in the previous encoding, the initial typeof E A insures that E has a valid typing (which
is necessary in the case that the argument x does not occur in the body F). Now, however,

rather than type FE, we type Fx using the additional rule

VA. typeof x A 4- typeof E A.

13ML, a polymorphic programming language, is introduced within [89] and standardized within [90]. ML-
style type inference is akin to type inference over the simply-typed A-calculus of §3.2, except that ML includes
the let construct (discussed below).
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This version simply separates the re-computation of E's type from that of typing F. Just as
before, different occurrences of x may be given different types, and, just as before, the type

of x (and hence the type of E) is re-computed from scratch at every occurrence.

Once the re-computation has been separated, however, it can be avoided entirely using the

universal generalization and limited amount of forward reasoning afforded by rule:

typeof (let E F) B 4-= Vx. rule (typeof E A)

(VA. typeof x A .4 typeof E A)

(typeof (Fx) B).

This makes an assumption of the form V.typeof x A while inferring the type of the body
Fx. Y includes exactly those type variables in A which are not free in any assumption, thus

directly expressing the restriction on the type inference rule for let. We do not lose any so-
lutions, since ML has the principal type property, and therefore all solutions to typeof E A'
are instances of the assumption VY.typeof E A.

5.4 Explanation-Based Learning (EBL)

The rule construct has allowed us to write programs which could not be straightforwardly
expressed in AProlog, such as the resolution theorem prover, as well as allowed us to formulate
programs more efficiently, such as type inference for ML. Moreover, the ideas behind rule
carry over to the problem of explanation-based generalization and learning, which is the
topic of this section.

Assimilation bridges the gap between explanation-based generalization and explanation-
based learning, where the latter additionally requires a means for incorporating generaliza-
tions within the logic program. The programmer controls EBG via extensions of lemma and
rule - lemma-ebg and ruleebg, which behave analogously except that their assumptions
are instead explanation-based generalizations. And as before, lemma..ebg will turn out to
be a special case of its more general counterpart, rule-ebg.

The following illustrates how the explanation-based generalizations of Chapter 4 could be
derived and then assumed in the scope of some further computation K: for the suicide
example of §4.2, the solution is

? - lemma-ebg (kill john john) K.

and for the symbolic integration problem of §4.4,

?- lemma.ebg (intgr (Ax.3*x 2 + cosx) h) K.
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5.4.1 The "rule-ebg" Construct

Rather than first considering lemma-ebg, we move directly to the general case, rule.ebg.
The general form for rule-ebg is

ruse-ebg G (0 VX. Gx * Dx) K

The formulation of ruleebg depends upon the 0 operator introduced in §4.3: recall that
the necessary truth of rules derived through EBG is captured with the 03 prefix. To insure
the modal validity of rule.ebg's assumption, we require that the forward inference step also
be necessarily true. 4

Operational reading. rule-ebg's operational interpretation is as follows:

1. Solve P - G with EBG enabled. If this fails, backtrack. Otherwise, it yields some
explanation-based generalization

0 VY. OGGy 4- ODDy.

where GGy is the generalized query, DDy captures the preconditions of the general-
ization (the choice of the symbol 'DD' will be motivated within §8.6), Y may appear
free within GGy and DDy, and OGGy necessarily has OG as an instance. The latter
is a consequence of the EBG algorithm itself: the original query must be an instance
of the generalized query (§8.6).

2. Find minimal substitutions ax and ay such that dom(o'x) _ (X), dom(ay) _ (Y), and

ax OGx = yOGGy.

3. Let X' =X - dom(rx).

4. Let Y Y dom('y).

5. Solve

{ VX'. VY,. axayO(Dx = DDy)} U OP I-p OK.

(As with rule, we may again rely upon AProlog unification to derive.a more logic programming-
oriented interpretation of ruleebg

1. Solve G with EBG enabled, resulting in the explanation-based generalization

3 VY. OGGy -# ODDy.

14We do not use ! ! in place of 0 V for rule.ebg's forward inference step as the former is only permitted
at the top-level of program clauses.
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2. Create new logical variables X for each universal variable in X, and then substitute
,' for A in GM and DM, yielding G,* and Dp.

3. Create new logical variables 9 for each universal variable in Y, and then substitute

for Y in GGy and DDy, yielding GG:9 and DD.,.

4. Unify GGS and Gt.

5. Solve (03 V.. Vk. Dt 4-- DD,) =: K.)

Declarative reading. While rule-ebg differs from rule in the obvious way, the same
declarative reading is applicable to both! This is because in the same sense as rule, rule-ebg
does not permit assumptions not derivable from the logic program. The proof relies upon the
validity of our EBG algorithm (established in §8.6), and then employs techniques analogous
to those used in the proof for rule (§5.3.3). We omit this proof as it requires deriving
formal soundness properties under an inference system extended with 0 (addressed in §8.3)
and with EBG (not addressed), but we do provide a formal characterization of A0Prolog
generalization in the form of an abstract interpreter in §8.6.

As is the case with rule, rule-ebg must also take AProlog constraints into account. The
situation is handled analogously. (See also §9.2.2.)

5.4.2 Example: "lemma-ebg"

We may now define lemma-ebg in terms of rule-ebg:

lemma.ebg E K 4= rule-ebg E (0 VE. E #, E) K.

Similarly, a committing version may be defined as

lemma.ebg E K -- rule-ebg E (0 VE. E => (E = !)) K.

Additional illustrations of rule.ebg appear in the remaining chapters.
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Chapter 6

Search Control via Tactics and
Programmable Learning

The integration example we presented within §4.4 relied upon logic programming's implicit
search to solve queries. Additional levels of search control need not, however, interfere
with the underlying process of EBG! We demonstrate this by implementing a tactic-based
solution of the symbolic integration problem. Search is controlled within a tactic-based
theorem prover (or problem solver) by requiring the user to a priori or interactively specify a
combination of proof steps, or tactics, with which to attempt the derivation of a goal [50, 20].
This combination of tactics guides the construction of an actual proof (or problem solution).

6.1 Example: Tactic-Style Symbolic Integration

Once again, our presentation herein focuses upon the most relevant and interesting aspects
of the example; the unabridged tactic-based problem solver may be found in Appendix A.5.

Tactics are simply named rules: for the integration domain, we have

H tac constant (intgr (Ax.a) (Ax.a * x))
true.

!! tac power (intgr (A,., a) (Az.za+l/(a+1)))
true.

tac constantleft (intgr (Ax.a * fx) (Ax.a * f'x))
(intgr f f').

! tac plus (intgr (Ax.fx + hx) (Ax.f'x + h'x))
(intgr f f',
intgr h hl).

tac costac (intgr cos sin)
true.

Tactics perform goal reduction: the input goal G, (2nd argument) is reduced to a more
easily solved subgoal Gout (3rd argument).
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To represent compositions of tactics, we have problem independent meta-tactics, or tacticals,
such as

!tac idtac Gin Gin.
!tac (then T, T2) Gin Gout .4= tac T, Gin Gm,,,, tac T2 Gined Got

!tac (orelse T, T2) Gin Gout *- tac T, Gin Gout; tac T'2 Gin Got

!tac (try T) Gin Gout 4- tac (orelse T idtac) Gin Got

!!tac (complete T) Gin true <-- tac T Gin true.

!tac (repeat T) Gin Gout .4- tac (orelse (then T (repeat T)) idtac) Gin Got

Tacticals are applied to compound goals (i.e., those containing logical connectives) via
maptac:

!tac (maptac T) true true.

tac (maptac T) Gin2 G0 ut2,

!tac (maptac T) (Gin, Gjn2) Gout ~ ,tac (maptac T) Gin, Gout,,
tac (maptac T' Gin2 G0 ut2,

!tac (maptac T) Gin Gout 4- tac T Gin Gmdi,
simpi Gmed Got

where the clauses for simpi may be found in Appendix A. 1. (The above tacticals were to a
large degree borrowed from Felty [44, pp.143-149].)

We augment the above with a special interactive tactical:

!!tac interactive Gin Gout 4- write-.string "Goal to be reduced :", write Gi,,
newline, write-.string "Enter tactic/tactical : "
read AT. tac T Gi Gm,,d, ((Gme,r = true, Gout = true)

tac interactive Gmed Gout).

Now to solve the query

?-tac interactive (intgr (Ax.2 *(3 *cos x)) h)

we could enter the series of tactics constant.Jeft, constantieft, and costac as prompted;
or equally, the tactical

then (repeat constantieft) cos-tac

yielding

H = Ax.2 *(3 *sin x)
Got= true
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Entering the same series of tactics or the same tactical to the query

?- lemma-ebg (tac interactive (intgr (Ax.2 * (3 * cos x)) h)
Gout)

top.

leads to the assimilation of the explanation-based generalization

!! tac interactive (intgr (Ax.a * (b * fx)) (Ax.a * (b * f')))
(intgr f f').

(In §6.3 we discuss why it is not desirable for interactive to appear within the generaliza-
tion.)

As a somewhat more complex illustration, the query

?- lemma-ebg (tac interactive (intgr (Ax.2 + (3 * x2 )) h)
Gout)

top.

when solved, for example, by the tactical

then plus (maptac (orelse constant (then constant-left power)))

assimilates the generalization

!! tac interactive (intgr (Ax.a + (b* xc)) (Ax.(a *x) + (b* xc+l/(c + 1))))
true.

6.2 Level of Generalization

As one would expect, the above explanation-based generalizations are applicable to problems
not addressed by the original tactical:

Az.2 * (3 * sin x)
x.a * (y * (3 * x))

This is, of course, because tactics of the training theory are abstracted (as well as constants
of the original goal).

At the same time, the derived rules do not cover the range of problems for which the given
tacticals are applicable: consider that the first tactical

then (repeat constant-left) cos-tac
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solves each of the integrals

Ax. Cos z
Ax.4 * cos z
Az.2 * (3 * cos z)
Ax.a * (y * (3 * cos x))

and so on.

Because the tactical- or meta-level is formulated completely within D, generalization does
not occur at that level; instead generalization is confined to the tactic- or rule-level. This is,
of course, exactly what we were after when we set out to make the additional level of search
control transparent from the perspective of EBG. Alternative formulations could produce
generalizations at the tactical-level, but those derived rules are more likely to be so general
that they would be difficult to apply. [37].

6.3 Level of Assimilation

As discussed within Chapter 5, under the traditional approach to learning, the problem solver
produces and assimilates generalizations in the course of solving queries. Such an approach
to assimilation is, however, problematic for tactic-based paradigms. In the above example,
although generalization occurs only at the level of tactics, the derived rule nevertheless con-
tains a reference to the tactical interactive. If we are to maintain a strict separation of the
rule-level and meta-level, it does not make sense to assimilate a generalization encompassing
both levels. Rather, a slightly modified generalization could be assimilated at the rule-level
as a derived tactic:

!! tac constantlefttwo (intgr (Ax.a * (b * fz)) (Ax.a * (b * f'x)))
. (intgr f f').

Moreover, this assimilation of a derived tactic can be achieved through the limited forward
reasoning provided by rule.ebg:

?- rule.ebg (tac interactive (intgr (Ax.2 * (3 * cos x)) h) Gout)
VGin VGout. tac interactive Gin Gout =* tac constantlefttwo Gin Gout
top.

The point here, and it is an important one, is that it is the user (or client program), rather
than the problem solver, which is in a position to control assimilation in this situation. If we
were to instead directly assimilate the original generalization, we compromise the predicate
interactive in that a subsequent invocation might no longer prompt the user; that is, we
compromise the user's control over search.

This example reinforces our belief that for such applications EBG should be a feature of
the language in which problem solvers are coded, rather than a 'black box' within the
problem solving architecture. In other words, what is required is a language in which one
can program the learning mechanism. By providing the programmer with an explicit means
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to control generalization and assimilation, we defer the difficult problem of determining when
to generalize and assimilate [72]. Client programs have the potential advantage of bringing
domain knowledge and user interaction to bear in determining what is to be learned. This
concept of programming generalization and learning within the same language in which
problem solving and interaction occur is markedly different from what we label 'black-box'
learning. Hence our approach stands in contrast to systems such as Soar [75], Prodigy [92],
and LEAP [96] in which learning is largely relegated to the system.

6.4 Operationality vs. 0l - Revisited

While §4.5 illustrated that both 0 and operationality criteria serve to define EBG's gener-
alized proofs (and hence its results), the tactic example above demonstrates that the mech-
anisms are not interchangeable: consider that a formulation of the integration domain that
replaces 0 with operationality criteria (defined via the predicate oper) requires specifying

oper (tac interactive (intgr cos sin) true).

The problem is again that this definition forces the mixing of the rule- and meta-level,
thereby violating the modularity of our encoding.

6.5 An EBG Tactical

As presented within §6.3, the following query represents a way to perform EBG over inter-
active tactic-based problem solving:

?- rule-ebg (tac interactive (intgr (Ax.2 * (3 * cosx)) h) Gout)
(VGim VGout. tac interactive Gin Gout * . tac constantleftAwo Gin Gout)
top.

EBG need not, however, be separated from the meta-level: consider the special generalization
tactical

!! tac (ebgtac Tac) Gin Gout 4- rule-ebg (tac interactive Gin Gmed)
(VGin VGmed. tac interactive Gin Gmed

=> tac Tac Gin Gred)

(tac interactive Gmed Gout)

At any point in the interactive solution of a goal Gin, the user may initiate EBG via
ebgtac, which takes the name Tac of the tactic to be derived as an argument (e.g.,
constant lefttwo). rule-ebg, in turn, recursively invokes interactive to reduce the ini-
tial goal Gin to some other goal Gmed. When this nested invocation returns (or 'pops'),
which would result from the user entering idtac as prompted, rule-ebg uses the resulting
explanation-based generalization to derive a new tactic Tac. As a result of the forward
chaining step, this newly derived tactic is assimilated, and thus made available (at the user's
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request) for application within the solution of Gmd. Moreover, if we want to retain the
result of EBG after solving Gred, simply replace the third argument of rule-ebg with

tac interactive Gmed Gut, top

(A further illustration of the EBG tactical may be found in Appendix A.6.)
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Chapter 7

Program Transformation and
Apprentice Learning

As introduced within §2.1, one paradigm for formal program development is that of program
transformation [13, 68, 42, 102]. Under a transformational approach, an abstract specifica-
tion of an algorithm is refined, or specialized, through a sequence of formal elaboration steps,
or transformations, into a program with acceptable performance. The resulting sequence of
transformations, or meta-program, along with the initial specification serve as a derivation,
or justification, of the optimized program.

In that they encode named incremental problem solving steps subject to composition, pro-
gram transformations are akin to tactics. The difference is, of course, that transformations
operate on programs (or subexpressions of programs) rather than upon goals. Also, tac-
tics embody theorem proving steps, which are generally directional (reducing goals to more
easily solved subgoals), while there is typically no clear directionality to transformations.
Typically, transformations map one program to a functionally equivalent version that may
have different performance characteristics.

7.1 Example: Tail Recursion

We illustrate EBG over a transformation system we have applied to induce tail recursion in
certain situations.' (From a tail recursive version, an iterative form could easily be derived.)

We begin with a functional specification of the factorial program:

fix Afact. lam An. if (equals n 0)
1
(appl fact (n - 1)) * n

1This example is treated more abstractly within Dietzen & Scherlis [33], among others.

84



The above is a AProlog abstract syntax for a simple functional language. The constructs
lam and appI represent object-level A-abstraction and application, respectively. (The
incorporation of explicit notation allows us to distinguish meta- and object-level. This
provides programmer control over operations such as 3-reduction: that is, we can write
(appl (lan Ax. x) 1) without AProlog performing the reduction, as it would for the di-
rect representation ((Ax. x)1) =o 1. Sl-reduction is then handled explicitly by replacing
(appl (lan f) x) with fx.) Finally, the fixpoint or recursion operator fix is 'applied' by
substituting its body for each occurrence of the bound identifier within its body.

The derivation proceeds by applying transformations to this specification. For example, the
following transformation replaces an occurrence of e with op e z, where z is a right identity
of op (for example, mapping a to a + 0):

!! add-id-right op C (C e) (C (op e z)) 4= right-identity op z.

The third and forth arguments match the input and output object programs, respectively.
The second argument C specifies a context - i.e., the particular subexpression of the input
program to be transformed. These higher-order context variables serve to formally encode
subterm or occurrence selection, which might, for example, result from "pointing with a
mouse" [106]. This represents yet another application of higher-order representation lan-
guage: the formal expression of occurrences. For example, within the following invocation
of the transformation

- add-id.right (Ax.Ay. x + y) (Ag.g * h) (a * b) Fout.

the context variable is C = Ag. g * h. From the definition of add-id-right above, C is
applied to e and then matched against the input a * b; that is,

Ce = (Ag.g*h)e
-- e*h

= a*b

Thus, e is instantiated to a and h to b. Now, given that

right-identity (Ax.Ay. x + y) 0

the output Font is instantiated as follows:

Fout" C(opez)
= (Ag. g * b) ((Ax.Ay x + y) a 0)
=1 (Ag.g *b) (a + 0)
-t (a+ 0)* b

The full derivation, which consists of a sequence of ten such transformation rules and the
associated contexts, constitutes a meta-program - i.e., a program that manipulates an
object program such as fact. Like tacticals, meta-programs may be specified a priori, or
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constructed interactively. Ideally, interactive construction of meta-programs consists of al-
ternatively naming a transformation rule, and then selecting an appropriate context. And
ideally, context selection would be derived by translating mouse input into the appropriate
higher-order context. However, as eLP currently lacks the necessary interface to inter-
pret mouse events, contexts have herein been hand-coded. We first describe an a priori
meta-program tail-rec embodying this derivation. We later provide, in Appendix A.6, an
implementation supporting the interactive construction of a meta-program equivalent to
tail-rec.

7.1.1 Derivation

We now enumerate the individual steps of the tail-recursive fact derivation. Our discus-
sion will focus upon the abstract nature of the transformations, rather than upon the
low-level details of transformation application itself; the latter was treated to some ex-
tent for addid-right above. After grasping this abstract description of the derivation,
the reader may then want to review the AProlog representation of these transformations
(Figure 7.1), and their application with the appropriate contexts via the meta-program
tail.rec (Figure 7.2). However, for many readers the intimate details of both the abstract
derivation and its A':Prolog counterpart may prove too tedious to be of interest. Indeed,
there is nothing new in these transformations, except, to some degree, their representation
within higher-order language. (The case for using higher-order language to represent pro-
gram transformations is argued by Huet & Lang [681, and more recently by Pfenning &
Elliott [106], and Hannan & Miller [59].) It is the application of higher-order EBG to the
whole process which is our contribution. For those readers more interested in the latter, I
suggest you skip ahead to the discussion of §7.1.2.

0. We begin with the initial definition of fact.

fix Afact. lam An. if (equals n 0)
1
(appl fact (n - 1)) * n

1. it-expand term in the object-language; that is, insert a lam and an appl. ('...' elides
the body of fact.)

lam An. appl (fix Afact ... )

n

(The above n is distinct from that within fact's body.)

2. Insert a multiplication by 1. This transformation relies upon right-identity (Ax.Ay. x * y) 1.
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lam An. (appI (fix Afact....)
n) * 1

3. Abstract over 1; that is, make it a parameter. This introduces a second argument
which is to become the accumulator within the eventual tail recursive version.

appI (lam Am. lam An.
(appl (fix Afact....)

n) * m)
1

4. Name the resulting two argument function fact,: since fix specifies the expansion of
recursive functions, one may think of it as a mechanism for function definition. This
initial definition of fact1 will be used later in the derivation.

appI (fix Afact1 . lam Am. lam An.
(appl (fix Afact....)

n) * m)
1

5. Unfold the recursive definition of fact; that is, expand the fixpoint operator once.

appI (fix Afact 1 . lam Am. lam An.
(appl (lam An'. if (equals n' 0)

1
((appl (fix Afact. ...) n' - 1) * n'))

n) * m)
1

6. #-reduction in the object-language; that is, (appl (lam An'. fn') n) = fn.

appl (fix Afact,. lam Am. lam An.
(if (equals n 0)

1
((appl (fix Afact. ...) n - 1) * n))

,m)
1

7. Distribute * over if.

appl (fix Afact 1 . lam Am. lam An.
if (equals n 0)

1 *m
((appl (fix Afact. ...) n - 1) *n) m)

1
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8. Simplify the then-clause using the fact that leftAdentity (Ax.Ay. x • y) 1.

appl (fix Afactl. lam Am. lam An.
if (equals n 0)

m
((appl (fix Afact. ...) n - 1) * n) * m)

1

9. Re-associate the multiplicative expression of the else-clause, since associative Ax.Ay. x * y.

appi (fix AfactI. lam Am. lam An.
if (equals n 0)

m
(appl (fix Afact....) n - 1) * (n * m))

1

10. Observe that within step 9 the subexpression

(appI (fix Afact....) n - 1) * (n * m))

is a higher-order instance of the original definition of fact, given in step 4:

fix AfactI. lam Am. lam An.
(appl (fix Afact ... )

n)*m)

The only difference is the values of the arguments m and n. This means that we may
fold the above expression into a fact, invocation.

appI (fix Afact,. lam Am. lam An. if equals n 0
m
(appl (appl fact, (n, m)) (n - 1)))

1

This completes the derivation.

As mentioned above, each of the preceding transformation steps is formally represented
in Figure 7.1. While we do not attempt a proof, we claim that these transformations are
correctness preserving - i.e., they do not change the functionality of the program.
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7.1.2 Generalizing the Derivation

The tail-rec meta-program may be applied to fact through the query

- tail.rec (Ax.Ay. x * y)

(fix Afact. lam An. if (equals n 0)
1

J(appl fact (n - 1)) * n)
Fout •

which yields the tail recursive expression

Four = appl (fix Afact 1 . lam Am. lam An. if (equals n 0)
m
(appl (appl fact1 (n m in)) (n - 1)))

1

For explanation-based generalization, we instead make the query

- lemma.ebg (tail-rec (Ax.Ay. x * y)
(fix Afact. lam An. if (equals n 0)

1
(appl fact (n - 1)) • n)

top.

which leads to the assimilation of the following generalization:

!! tailrec op

(fix Af. lam Ay. if (H1 y)
a
(op (appl f (1H2 y)) (13 y)))

(appI (fix Af'. lam Ax. lam Ay. if (H 1 y)
X
(appl (appl f' (op (H3 Y)X))

(H 2 y)))
b)

.= right-identity op b, left-identity op a, associative op.

The result produced by our prototype is not so elegantly expressed: it consists instead of

a series of constraint equations. We took the liberty of collapsing them into their 'most

obvious' solution above for presentation. The problem of more elegantly displaying these
constraints requires further consideration; see §9.2.2.

In either form, however, the generalization may be applied to analogous programs such as
list reversal:
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- tailrec append

(fix Arev. lam l. if (null 1)
nil
(append (appl rev (tl 1)) ((hd 1) :: nil)))

which instantiates
2

a = nil

b = nil
H1 = null
H 2 = tl
H3 = . hd/::nil

yielding the tail-recursive version

Fout = appl (fix Arev,. lam Ak. lam l. if (null 1)
k
(appl (appl rev, (append ((hd 1):: nil) k))

(tll))
nil

The above result requires only the addition of a final simplification to make the reduction
from (append ((hd 1) :: nil) k) to ((hd 1) :: k). Hence, the generalized fact derivation is
sufficient for rev as well (except for the final simplification).

7.2 Expressiveness of Higher-order Generalization

The elegance of the preceding generalization is largely due to the expressiveness of our
higher-order language. In particular, essential restrictions on the input program are implicit
in the higher-order notation: (1) that the function argument y may not appCar in the 'then'
part of the if-statement, (2) that the function f may not be recursively invoked in the
'conditional' or 'then' parts of the if, and (3) that the recursive call to f within the 'else'
branch must be the argument to a particular function op having special properties. These

restrictions are not explicit in any single transformation step, but rather are spread over
the sequence of transformations embodied by the generalization. Realizing a similar result
within a first-order system would be complicated by the need for these checks.

Admittedly, even with the expressivity of higher-order language, program development by

transformation is a very tedious business. But this is precisely why this domain represents
2While the derivation never estabiishes that a =- b, this follows from the fact that a = (op a b) =b using

right-identity op b and left-lidentity op a.
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an attractive application for explanation-based generalization: by employing EBG to ab-
stract derivations, one hopes to derive 'larger-grain' transformations - 'macro operators',
if you will. Thus, it is our belief that EBG is one means by which to develop higher-level
transformations, of which the preceding example is an illustration.

7.3 Apprentice Learning

The search space for the above derivation is so complex that without user guidance (e.g.,
via an explicit meta-program, specified a priori or interactively), it would not be feasible for
a system to 'discover' the sequence of transformations and their associated contexts with
which to induce tail recursion. The transformation problem space is further complicated by
the fact that it is the user who decides when a derived program is acceptably 'efficient' (in
this case, when it is tail-recursive). Within the transformation paradigm, we are not in the
situation of theorem proving where there are only two answers - "yes, a goal is provable" or
"no, it is not." Instead, the role of the user is two-fold: to guide the derivation and to make
value judgments upon the resulting programs. Currently we are so far from automating the
latter that transformation systems will continue to depend upon user assistance.
That these value judgments are not represented within the transformations means they are
not manifest in the resulting generalizations. There is an important underlying assumption
here: namely that, a sequence of transformations which leads to a 'good' program in one
particular case (e.g., fact) is presumed to do the same for other programs to which it is
applicable (e.g., rev). However, as this 'goodness' exists outside of the transformations
themselves, there is no guarantee that a derived rule indeed yields a 'good' program.3

Explanation-based generalization is often labeled 'speed-up' learning in that EBG extends
the domain theory by constructing new rules in the deductive closure of that domain theory.
In other words, under EBG nothing new may be proven, but the solution of problems
covered by derived rules is (hopefully) quicker. With the incorporation of user interaction
to address the problem of intractable search, this characterization of EBG becomes invalid:
the resulting generalizations, while in the deductive closure of the rule set, are generally
not accessible without user guidance. Here EBG serves as a vehicle to transfer knowledge
fiom the user to the learner. The combination of learner and user, when viewed as a whole,
still only accomplish speed-up learning. But, after a joint derivation of fact, the learner
could handle rev without user assistance (presuming that the system could find the final
simplification). That is, from the individual perspectives of the learner and user, more than
speed-up learning has taken place [25, pp.151-153] [29, pp.304-305].

7.4 Other work

The above is reminiscent of the learning apprentice system defined by Mitchell [94] vhich
LEAP, a learning apprentice for VLSI design, is perhaps the best known example [96, Sl].

3We are grateful to Jack Mostow for this observation [98].
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However, our approach differs in that we are not necessarily attempting to develop heuristics
that make an intractable theory tractable [99, 126]. Rather, the client may simply intend
that the user's role become easier as derived generalizations are made available, while the
fundamental intractability of the domain remains.

Hill also considers the application of EBG to the domain of program development [62]. How-
ever, Hill's research utilizes a first-order encoding, and focuses upon a particular application
within formal programming: the generalization of abstract datatype representations. Our
work is directed, instead, toward the realization of a common language, A°Prolog, in which
a multiplicity of programming and theorem proving methodologies can be realized.

In contrast with the apprentice approach is that taken by Steier [123]. Steier uses the Soar
architecture (see §4.7 & §6.3) to develop a series of algorithm designers that learn from
experience. Unlike the work above, his efforts do not focus on cooperative problem solution;
rather the system alone constructs programs to meet given criteria using its knowledge-base
of design information. And hence it is less critical that the design knowledge within his
system be easily comprehended (which may, in part, explain his success employing first-
order encodings). At the same time, the programs his framework synthesizes (e.g., sorting
algorithms) are significantly more complex than anything to which we have thus far applied
our framework, and his learners exhibit improved performance as they encounter similar
design problems.

Recently, Hagiya has formalized higher-order EBG over another higher-order language LF [541.
LF, which stands for 'logical framework', is a logic for encoding other logics [60]. By for-
mulating EBG over LF, Hagiya realizes EBG over languages defined in LF. Like ours, his
formulation is defined in terms of higher-order unification, but he also extends the algorithm
to treat mathematical induction. Hagiya also uses LF and higher-order unification to explore
the derivation of programs and proofs by example [56]. Previously Hagiya has presented a
solution for generalizing programs (e.g., to operate on greater ranges of input values) in the
proofs-as-programs framework using higher-order type theory [55].
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!! insert-lamC
(C fix A!. lam An. G f n)
(C lam An. appl (fix Af. lam An'. G f n') n).

!! add-oper-right-id-l op C
(C Ax. Gz)
(C Ax. op (G z) a)

4= right-identity op a.

!! abstract-arg op C, C2
(C (C2 a))
(C (appI (la- Am. C2 m) a)).

!! name-function C
(C G)
(C fix Af. G).

!! unfold C
(C fix Af.Gf)
(C (G fix Af. G f)).

!! reduce-l C
(C Az. appI (lam An. G n) z)
(C Az. G z).

I! distributeif.2 op C
(C Ax. Ay. op (if (B x y)

(El z y)
(E2 X y))

(H x V))
(C Az. Ay. if (B z y)

(op (El x y) (H x y))
(op (E2 z y) (H z y))).

!! leftidentity2 op C

(C Ax. Ay. op a (H z y))
(C Az. Ay. H z y)

-= left-identity op a.

H reassociate_2 op C
(C Ax. Ay. op (op (H1 x y) (H2 X y)) (H3 x y))
(C Ax. Ay. op (HI z y) (op (H2 X y) (H 3 x y)))

4= associative op.

H fold-two_3 CI; C 2 C3 (C2 fix Af. lam Am. lam An. C3 G n m)
(CI Af. Ax. Ay. C3 G (H z y) (H 2 X y))
(C Af. Az. Ay. appl (appl f (H 2 X y)) (H 2 z y)).

Figure 7.1: Transformation Rules
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!! tail-rec op Fo Flo €=

insertlam (AC. C)

add-oper-rightid-l op
AC. lam An. C n)

abstract-arg op
(AC. C)
(AC. lam An. op (Wo n) C)
F2 F3 ,

name-function (SC. appl C W)
Fs F4,

unfold (AC. appl (fix Af'. lam Am. lam An. op (appl C n) m) W)
F4 F5 ,

reduceA (AC. appl (fix Af. lam Am. lain An. op (C n) m) W)

distributeif_2 op
(C.appl (fix Af'. lam Am. lam An. Cm n) W)

left-identity,2 op
(AC. appl (fix Af'. lam Am. lam An. if (W m n) (C m n) (W3 m n)) W)F7 Fs,

reassociate_2 op
(AC. appl (fix Af'. lam Am. lam An. if (W, m n) (W2 m n) (C m n)) W)Fs F9,

fold-two.3 (AC. appi (fix Af'. lam Am. lam An. if (W, m n) (W2 m n) (C f'm n)) IV)(AC. appi C W)
PAC. AH1 . AC2. op (appl C H 1 ) H2 )

F 9 Flo.

Figure 7.2: Meta-program
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Chapter 8

A0Prolog and EBG

Within this chapter, we more formally develop the A0Prolog language and the higher-order
EBG algorithm it admits. To that end, we first extend the inference system of §3.7 to
realize A'Prolog. Next, we introduce prototype implementations of A0Prolog, and then of
EBG over A0Prolog, each through an interpreter written in AProlog. While these interpreters
axe too slow to be of great practical value, they serve as an abstract specification of both
the A'Prolog logic and the EBG algorithm.

The concepts developed herein (in particular, the AProlog interpreters) are sufficiently de-
tailed and deep that readers will likely have to invest some time studying the presentation
(and scrutinizing the code). The more casual reviewer may wish to skim this chapter instead.

Other work. del Cerro offers another approach to incorporating modal logic within the
logic programming framework that has nothing to do with EBG [26, 27]. For treatments of
automated theorem proving in modal logics outside of logic programming (and EBG), see
Wallen [131] and Thistlewaite [128].

8.1 The Logic of A Prolog

The syntax of AProlog is summarized by the following inductively defined classes:

G ::= true I A I G ;,G2  I ID = G I Vx [:,r]. G I 3x [: r]. G I 0 Go
Go ::= true I A I G 0 1 ,G0 2 I Vx[:r].Go I OGo
D ::= true I A I D1 ,D 2 I D4-G I Vx[:TO.D I OD
P ::= e I D. ' I !!D. P

where the new meta-variable Go over ranges over 'boxed' goals, and f is the null terminal.
Although our examples have mainly employed 0 at the top-level, the above definition points
out that 0 is in no way restricted to outermost occurrences.
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A0Prolog does not distinguish sequences of the modal prefix; that is, OOM is equivalent
to OM. For readers familiar with modal logic, in this respect A0Prolog may be considered
an intuitionistic version of the classical modal logic S5 [16]. However, A0Prolog is properly
contained within S5 as it lacks the logical connectives of negation (-') and the second modal
operator of possibility 0, which may be defined as -'0-'. (The difference between possible
and contingent truth is similar to that between contingency and necessity: OA is to A as A
is to OA. A0Prolog could equally have been formulated with unprefixed clauses representing
domain theory and clauses prefixed with 0 standing for training theory.)

The above definition disallows goals of the form 0(D =,, G), 0(3x.G), and O(GI ; G2).
For 0(D = G), this restriction is motivated by the lack of modally correct strategy (i.e.,
inference rules) for solving this goal. One possible tactic would be the inference rule

{0 D} UP I-P G

P F9 0 (D = G)

Note, however, that the above permits IF- 0 (OA =: A) to succeed, although it is clearly
an invalid goal. For the remaining disjunctive and existential G-forms - D(Gi ; G2) and
0(3x.G) - there exist valid inference rules:

P I-e 0 G1

P -e 0 (G1 ; G2)

P I-0 [] 02

P Fe 0 (G1 ; G2 )

P I-eo 0 Gy

" Fo\y 0 (3z:r. Gx) where y V free(G).

However, we question the usefulness of the above inferences, and whether any additional
expressivity is provided by those G-forms. For now, we have made the simplifying assumption
of disallowing each of these goals.

8.2 Normal-form for Clauses

The AProlog inference system of §3.7 may be extended to realize 'pure' A0Prolog. (By
'pure' we simply mean the logical foundation of the language - that is, the logical connec-
tives without EBG, rule, '!', etc.) Before presenting that interpretation, we first derive a
normal-form for arbitrary A0Prolog D-forms, analogous to that given for AProlog in §3.4.2.
This normal-form is exploited by the inference system of §8.3 as well as our full A°Prolog

implementation (Chapter 9).
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The new normal-form Dnf is defined as

Dnf :: D nf ,Df Dv
D : Vx. Dv A=Gw 4 (ODov)#Gw)

Dol ::= Vy. Dv I A.4=Gs

Under this definition, the program P is mapped to a set of clauses, each of which is either
of the previous normal-form -

VW. A 4= Gw.

or of the extended normal-form -

VW. (3 VS. A 4 Gs ) ' Gw.

where variables of W may appear free in G", and those of both W and $ may appear free
in A and Gs. (We take the liberty of dropping the W and S on A as the alternative Aws
becomes overly intrusive.) As before, an atomic clause A becomes A - true, but now a
'boxed' atomic clause 0 A becomes 0 (A 4= true) .= true.
The validity of Dnf relies upon our decision to collapse sequences of the Modal operator -
ODD goes to O3D. To illustrate, the D-forms on the left are mapped to the normal-D-forms
on the right:

q q -= true
D q o (q 4= true) 4= true

Vx. O q z Vz. (o (q z 4= true) 4- true)
D3Vx.qz (O V. qxz = true). 4 true
[] (p =:,, [ (r =: q)) 0 (q 4= (p, r)) = true
0 ((o p, r) =- (o q, s)) 0 .= (O p, r)) .=true,

0 (S .4= (0 p, r)) .4= true

o (o p * (o r * Eq)) [3 (q (o p, 0 r)) .4true
p =.: Vz. 13 (s, (r x =:, q)) Vx. (1 (q r= rx) .4- p) ,

Vx. (0 (s =true) 4= p)

In §3.6 we developed a AProlog program mapping arbitrary AProlog D-forms to a normal-
form. In Figures 8.1 & 8.2, we give an analogous mapping (again within AProlog) for
A0Prolog D-forms. As before, the predicate requantify moves quantifiers down; the predi-
cate conjoin collects preconditions; and the predicate ndform coordinates the other pred-
icates. Now, however, each of these predicates has a weak (prefixed by 'w') and a strong
(prefixed by 's') version. The 's' is indicative of those components that are nested under a
O within the original D-form, while the 'w' is for components not so nested. In fact, the
new normal-form is most easily viewed as two levels of the preceding normal-form: one for
the 'boxed' portion; the other, for the 'unboxed' (although both Gw and Gs may themselves
contain 0).
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wrequantify (V.Dlx ,D 2 X) (D , D') 4 ,wrequantify (VDI)D,
wrequantify (V D2 ) DY

wrequantify D D.

srequantify (Vx. Dl , D2 x) (D , D') s=! requantify (V Di) D,,
srequantify (V D2 ) D'2

srequantify (Vx. 0 Dx) (03 D') ~ ,srequantify (Va,. Dx) D'
srequantify D D.

wconjoin G (D1 ,,D 2 ) (DI , D2) 4=Wcoujoin GD D, 
wconjoin G D2 D.-

wconjoin G (V D) (V LV) .=Va,. wconjoin G (Dx) (D'x).
wconjoin G (A 4-- true) (A 4--0).
wconjoin G (A 4- GI) (A,4- (G , C1 )).

sconjoin G (DI , D 2) (DI , DY2) sconjoin G D, D11,
sconjoin G D2 174.-

sconjoin G (V D) (V DV) ~ =Vz. sconjoin G (Dx) (D'x).
sconjoin G (03 D) (03 D') 4=Sconjoin G D D'.
sconjoin G (A 4=true) (A G= ).
sconjoin G (A G= C) (A (G, G1 )).

Figure 8.1: Clause normal-form conversion (Part 1).

98



wndform (DI , D2) (D', D2) = !, wndform D, V1,

wndform D2 DY.

wndform (V D) D"= !, (Vz. wndform (Dx) (D'x)),
wrequantify (V D') D".

wndform (D = G) D" .= !, ndform D D',
wconjoin G D' D".

wndform (0 D) D" €= !, sndform D D',
conjoin-true D' D".

wndform A (A € true).

sndform (DI , D2 ) (D' ,/D2) = !, sndform D, V1,
sndform D2 LY2.

sndform (V D) D" !, (Vz. sndform (Dz) (D'z)),
srequantify (V V') D".

sndform (D 4= G) D" s= !, undform D D',
sconjoin G D' D".

sndform (3 D) D' s !, ndform D D'.
sndform A (3 (A .4: true)).

conjoin-true (D1 , D2 ) (D' , D') = conjoin-true D, D',
conjoin-true D2 D2.

conjoin-true (0 D) (0 D 4= true).

ndform D D' 4 wndformDD'.

Figure 8.2: Clause normal-form conversion (Part 2).
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- (0QG)

(VW. A 4= Gw) E nf(P) OowA = eA' OP I-' OowGW

1P I- 0 A'
where dom(aw) C W,
dom(O) n W-= 0,
and aw & 0 are minimal.

(VW. (0 VS. A 4= Gs) .= Gw) E nf(P) 0owasA = 9A' #' I-, 0orwGw , OawosaG s

P V;9 A'

where dom(ow) g W,
dom(as) g S,
dom(0) n W = 0, dom(0) n S = 0,
and ow, as & 0 are minimal.

Figure 8.3: Partial 'weak' inference rules for A0Prolog.

One use of higher-order matching exploited within Figures 8.1 & 8.2 deserves further expla-
nation: By matching D against the A-term (Vx. D1 x , D 2 x), we insure that D is a univer-
sally quantified conjunction, and that D1 and D2 are bound to the appropriate functions of x
within D. For example, for D = (Vx. a x , b x), the preceding instantiates D1 = lam Ax. a x
and D2 = lam Ax. b x. Similarly, for D = Vx. a x, unifying D with V D1 instantiates
D1 = lan Ax. a x.

We do not herein attempt to formally establish that all A0Prolog D-forms can be mapped to
Dnf, although the code provides some evidence for this. Nor, for that matter, do we argue
further that the mapping to Dnf is meaning-preserving. A proof could take the form of an
extended set of distributive transformations analogous to those presented in §3.6.

8.3 Inference System for A 0Prolog.

It is important to distinguish the programming language A0Prolog from the process that
produces explanation-based generalizations of A0Prolog computation. Within this section
we further develop the former by extending the inference system of §3.7 to implement pure
A0Prolog. To that end, we split the V relation into F' and P - the former for the derivation
of unboxed ('weak') goals; the latter for that of boxed ('strong'): for example, from the clause
p we cannot derive the goal 0 p, but the goal p does follow from the clause 0 p. Initial
queries then are phrased as Vw G, but the inference -" 0 G is defined in terms of Fs G.
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11. true

10 He0 r10 OG2

P1 .0 (G i , G2)

P I-) (Va,: r. Gz) where y V free(0G),y V free(eP), and y dom(0)

P-;(O G)

(VW. (0 VS. A Gs) .= Gw) E nf(P) OawasA = OA' I- OawGw, 00 awasGS

PI- A'
where dom(aw) C W,
dom(os) _ S,
dom(e) n W = 0, dom(o) n S - 0.
and Ow, o & 0 are minimal.

Figure 8.4: 'Strong' inference rules for A0Prolog.

As one might expect, I-w largely follows the definition of I-: In Figure 8.3 we list only those
rules that have cbanged. For completeness, we include the full definition of I- in Fig-are 8.4,
although it too largely follows I-; in fact, only the final three rules differ. Of particular
importance is that only D-forms containing 0 are used to establish I-" G: we ensure the
necessary tr:th of G by requiring that each to its deriving clauses is also necessarily true.

Informal A0Prolog interpreter. For those readers preferring a 'logic programming' ori-
ented description of the interpretation of A'Prolog, we offer the following insight into the
preceding inference rules. Subsequent sections will further explicate A0Prolog.

As within our informal AProlog interpreter of §3.4.2, A0Prolog goals are herein reduced to a
atomic subgoal Ga for solution. And as within the inference rules, necessary (boxed) goals
are strongly solved; contingent ones, weakly solved. For strong solution, applied clauses
must be of the extended normal form (i.e., contain 0), since only a necessarily true clause
can establish a necessarily true goal. On the other hand, clauses of either normal-form are
relevant for weak solution.

From Ga and the normal D-form

VW. (C] VS. A 4= GI ) = Gw.
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(unboxed D-forms are handled as before), we precede as follows:

* Create new logical variables ; and S for each universal variable in W and S, and
then substitute W for W and S for S in A, Gw, and G, yielding A, Gw, and (s,
respectively.

" Unify A and Ga.

" For strong solution, solve (d w , 0 ds). For weak solution, solve (Gw, ds).

8.4 Introduction to the Meta-Interpreters

While the preceding inference system provides a formal characterization of the A0Prolog
logic, we have yet to treat higher-order EBG. To that end, we develop a program that
implements EBG over A°Prolog computation. This implementation consists of an extended
A0Prolog interpreter written in AProlog. To simplify discussion, we first present, in §8.5, the
basic A0Prolog interpreter without the generalizing component. This A0Prolog interpreter
provides a formal operational specification of A°Prolog which, for the most part, mirrors that
given by the inference system of §8.3. Due to the closeness of the correspondence between
the object-language (A0 Prolog) and the meta-language (AProlog), we shall often use the
more descriptive term 'meta-interpreter.'

Our A Prolog meta-interpreter is extended to perform EBG within a second prototype in
§8.6. This expanded meta-interpreter exemplifies the generalization algorithm, and has re-
produced most of the examples contained within this dissertation. (Others were derived
under the full implementation described in Chapter 9.) So that our presentation is more
accessible, we have deferred some less pertinent details of the generalizing meta-interpreter
to Appendix A.4.

Finally, in §8.7 we further extend this meta-interpreter to admit operationality criteria.

We chose to prototype A°Prolog and higher-order EBG in this manner to facilitate ex-
perimentation with alternative formulations of both the language and the generalization
algorithm, and moreover, to provide a formal specification of each. The prototypes are
sufficiently slow and limited, however, that a more direct implementation was eventually
required (Chapter 9).

8.4.1 Accessing the Logic Program

To run examples under the meta-interpreters to follow, the A°Prolog program Pob to be
interpreted must be available as data. This is accomplished by assuming hyp D for each
clause D of P.o prior to invoking the meta-interpreter. hyp addresses the need for reification
- the mapping from program to data. (Reification is the inverse of reflection; see §5.3.1.)
Within Prolog reification is accomplished with clause D G, which matches against clauses
in the program-base, instantiating D to the head and G to the corresponding body. AProlog
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waolve true 4 !
wsolve (G1 , G 2 ) 4 !, wsolve G1, wsolve G2 .
wsolve (G1 ;G 2 ) *= !,(wsolve G1 ; wsolve G2 )
wsolve (D *G) 4= !,hyp D = wsolve G.
wsolve (V G) t= !, Vx. wsolve (G x).
wsolve (3 G) 4= !, 3t. wsolve (G t).
wsolve (0 G) = !, ssolve G.
wsolve Ga 4 !, hyp D, wmatch D Ga Gs, wsolve Gs.

ssolve true -C-_
ssolve (G 1 , G 2 ) 4= !, ssolve G 1 , ssolve G 2 .
ssolve (V G) 4= !,Vx. ssolve (G x).
ssolve ( G) € !,ssolve G.
ssolve Ga € !, hyp D, smatch D Ga Gs, wsolve Gs.

Figure 8.5: Meta-interpreter without EBG: Goal analysis.

does not provide a clause construct.' Hence in AProlog, to manipulate programs and then
run the derived results directly requires that two versions of the program be present: the
initial one P, 6 , which is available as data (via an indexing predicate such as hyp), and the
reflected one added to the logic program .

hyp allows the meta-interpreter to enumerate the program ?ob to be interpreted with
AProlog's backtracking search (by successively solving the goal hyp D), although obviously
the performance of such an approach suffers in comparison with the schemes employed by
more standard logic programming implementations (e.g., hashing on the name of the predi-
cate heading an atom).

As mentioned above, the variables of clauses asserted with hyp must be explicitly universally
quantified: the scope of \Prolog's implicit quantification is insufficient as it is includes hyp
as well. (The '!!' convention, while part of the eventual system, only functions at the top-
level, and moreover, is not realizable within the prototype interpreter.) What follows is a
portion of the ubiquitous suicide example in the form recognized by the meta-interpreter:

hyp (0 Va. Vb. Vc. kill a b 4= hate a b, possess a c, weapon c).
hyp (gun obji).

8.5 The Meta-Interpreter

Our \'Prolog interpreter is divided between two sets of clauses: the solve predicates of
Figure 8.5, which reduce a given A0Prolog goal G to some number of atomic subgoals (Ga's),

'A AProlog clause would simply take the form clause D, but would also be more complex in that it
presumably would explicitly quantify universal variables. There does not appear, however, to be any logical
problem with adding clause to AProlog.
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and the match predicates of Figure 8.6, which attempt to derive a pending atomic subgoal
Ga from the program Pob.

The goal reduction performed by solve is again split between two sets of clauses: wsolve for
'weak-solve' and ssolve for 'strong-solve.' This distinction, analogous to that made between
Vw and PI, arises from the more stringent proof required by the necessary truth of 'boxed'
goals: {O p} - p, but not {p} I- 0 : p. The top-level predicate is wsolve, because goals are
contingent until a 0 has been encountered. Each of the Ga's derived through solve will
require either a 'strong' or 'weak' proof, which is realized through the corresponding match
predicates - wmatch and smatch.

Within the solve predicates, the solution of a A)Prolog goal is largely realized by the cor-
responding \Prolog construct. For example, a ArProlog conjunction (G1 , G2) is derived
by establishing the AProlog conjunction of the solutions to G1 and G2. Similarly, a univer-
sally quantified AProlog goal is universally derived under AProlog. And an implicational
goal D = G is proven by first assuming D, and then attempting to derive G. Such sharing
between object-language (AProlog) and meta-language (AProlog) makes for elegant inter-
pretation. (The rules of ssolve do not address the range of AProlog connectives because of
the additional restrictions placed upon boxed goals; see §8.1.)
In the final clauses of wsolve and ssolve, the pending goal has been reduced to an atomic Ga.
This is insured by our use of the cut operator '!' described in §3.5. Cut's only effect within
solve is to insure that Ga is indeed atomic: if Ga instead contained a logical connective, '!'
would not have permitted the interpretation to 'fall through' to its present position, as one
of the preceding clauses would have been chosen.
Through the predicate hyp, the final clauses of wsolve and ssolve select a potentially
pertinent clause D from the program, which the match predicates then attempt to apply
in the proof of Ga. The selection of D is inefficient in that each clause of *ob is simply tried
in order until one is found that derives Ga. (For the purposes of this meta-interpretation,
D-forms need not be in normal-form.) As we shall see, in the course of deriving Ga from
D, match may produce subgoals (Gs's) that must be subsequently solved to complete the
proof.

The match predicates analyze the selected program clause D to determine if it is applicable
in the solution of Ga. For a conjunction (D1 , D2 ), the (intuitionistic) logic programming
paradigm dictates that either D1 or D2 individually derives Ga (although both D1 and D2
are available for the derivation of any resulting subgoals.) A universally quantified clause
V D (or equivalently, Vx.Dx) is reduced by replacing the bound variable with a new logical
variable Y, which may become instantiated in the course of the proof: for example, the
clause Vz. weapon z 4- gun z becomes weapon Y 4= gun Y. If D is a rule D' .= G', we
conjoin G' with the subgoals that arise from establishing that D' implies Ga: for the clause
weapon Y -- gun Y, the interpreter first determines whether weapon Y establishes Ga,
and then attempts t, solve gun Z. When smatch encounters a 0 in the program, the
nested clause need only be weakly matched with the current goal. This is because proving a
goal 'strongly' simply requires that any utilized clauses must themselves be necessarily true.
The resulting subgoal Gs is, however, boxed as it too must be strongly proved. On the other
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wmatch (DI , D 2) Ga GS 4 !, (wmatch D1 Ga Gs; wmatch D2 Ga Gs).
wmatch (D4-G) Ga (G,Gs) =wmatchD Ga Gs.
wmatch (V D) Ga Gs 4=!,wmatch (D y) Ga Gs.
wmatch (0 D) Ga Gs =!,wmatch D Ga Gs.
wmatch Da Ga true = !, Da = Ga.

smatch (D 1 , D 2) Ga Gs '= !, (smatch D1 Ga Gs; smatch D2 Ga Gs).
smatch (D4=G) Ga (G,Gs) 4-!,smatchDGa Gs.
smatch (V D) Ga Gs =!,smatch (D y) Ga Gs.
smatch (3 D) Ga (C3 Gs) €=!,wmatch D Ga Gs.

Figure 8.6: Meta-interpreter without EBG: Clause analysis.

hand, wmatch ignores O's within D, because therein we axe only concerned with a weak
proof.

In the final clause of wmatch, the unification of an atomic Da and Ga is attempted: for
example, unifying the goal weapon objl with the clause weapon Y. This is analogous
to the unification of a goal and clause head under a Prolog interpretation. If successful,
this has the effect of 'returning' the accumulated conjunction of subgoals G (in this case,
gun objl) to the last clause of solve, which then derives Gs recursively. The predicate
smatch is, however, missing the analogue to the last clause of wmatch. This is because a
contingent atomic clause cannot be used to prove a necessary atomic goal; that is the clause
p is not sufficient to derive 03 p.

This concludes the discussion of the basic A0Prolog meta-interpreter. The next step is
extending it to perform EBG.

8.6 The Generalizing Meta-Interpreter

Within this section we extend the A0Prolog meta-interpreter of §8.5 to perform EBG. This
section focuses on developing the most relevant and interesting aspects of the prototype; the
unabridged meta-interpreter may be found in Appendix A.4.

Kedar-Cabelli & McCarty produce first-order explanation-based generalizations within Pro-
log via an augmented meta-interpreter [71]. As we shall take a similar approach, we briefly
review Kedar-Cabelli & McCarty's implementation: Under its second formulation (pp. 387-
388), their meta-interpreter, prolog-ebg, solves a particular query in parallel with the
construction of the associated explanation-based generalization. The predicate prolog.ebg
takes three arguments: the particular query G, the generalized query GG, and the conjunc-
tion of generalized conditions DD sufficient to establish GG.

Each 'rule' applied by prolog-ebg in the proof of G is similarly applied in the proof of GG.
Leaves of the Prolog computation that arise in the course of deriving GG (i.e., those goals
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wsolve true true true L
wsolve (GI , G) (GG 1 , GG 2 ) (DDI , DD 2 ) 4--!, wsolve G1 GG1 DD 1, wsolve G2 GG 2 DD2.
wsolve (GI ; G2) (GG 1 ; GG 2) DD 4=!, (wsolve G1 GG1 DD; wiolve G2 GG 2 DD).
wsolve (D*: G) GG DD 4--!, hyp D #- wsolve G GG DD.
wsolve (V G) (V GG) (DD z) 4--!, Vx. wsol e (G z) (GG z) (DD r).
wsolve (3 G) (3 GG) (DD t) =!, wsolve (G t) (GG t) (DD t).
wsolve (r3 G) (0 GG) DD 4=!, ssolve G GG DD.
wsolve Ga GGa (DD 1 , DD 2 ) €=!, hyp D,

wmatch D Ga DD1 GGa MG,
metawsolve MG DD2 .

ssolve true true true 4--!.
ssolve (Gi , G2) (GG 1 , GG2) (DDI , DD2 ) .=!, ssolve G1 GGI DD1 , ssolve G2 GG 2 DD2 .
ssolve (V G) (V G) (DD x) 4=!, V. ssolve (G x) (GG x) (DD x).
ssolve (0 G) (0 GG) DD 4=!, ssolve G GG DD.
asolve Ga GGa (DD 1 , DD 2) 4--!, hyp D,

smatch D Ga DD 1 GGa MG,
meta.wsolve MG DD 2 .

Figure 8.7: Generalizing meta-interpreter: Goal analysis.

established by 'facts') are accumulated in the conjunction of sufficient conditions DD. The
resulting explanation-based generalization is then GG 4= DD, where for example

GG = kill x z
DD = depressed x, buy x y, gun y

No explicit representation of the proof need be constructed; it is inherent in the Prolog
search.

As in the first-order approach of Kedar-Cabelli and McCarty [71], our generalizing meta-
interpreter develops two parallel proofs simultaneously: a proof of G and a generalized proof
of GG. Again these proofs are not explicitly constructed; rather they are implicit in the
AProlog search. In the course of deriving G and GG, the implementation accumulates the
conjunction of generalized clauses DD sufficient to establish GG - that is, the leaves of

the generalized proof. Figure 8.7 contains the extended solve predicates of the generalizing
interpreter, which also accept three arguments - the goal G (instantiated), the general-
ized goal GG (uninstantiated), and the conjunction of generalized sufficient conditions DD
(uninstantiated). The resulting explanation-based generalization is then !! GG 4-= DD.

In the extended wsolve and ssolve, the decomposition of G guides the corresponding in-
stantiation of the generalized goal GG. It is only at the atomic level where G and GG
diverge. (An exception is made for the handling of implicational goals D' C 0', which is

simplified by locally treating D' as a part of P0b.) The MG's (for 'meta-subgoal') in the
final clauses of solve assume a role analogous to that played by subgoals in the previous
meta-interpreter - that is, MG's retain subproof tasks for later derivation. The transition

106



wmatch (D 1 , D 2) Ga DD GGa MG 4=!, (wmatch D, Ga DD GGa MG
; wmatch D2 Ga DD GGa MG).

wmatch (D 4= G) Ga (DD t= GG) GGa (mg G GG,
MG) .=!, wmatch D Ga DD GGa MG.

wmatch (V D) Ga DD GGa MG 4= !, wmatch (D z) Ga DD GGa MG.
wmatch (13 D) Ga (0 D) GGa MG .=!, bmatch D Ga D GGa MG.
wmatch Ga Ga GGa GGa true.

smatch (Di , D2 ) Ga DD GGa MG 4=!, (smatch D1 Ga DD GGa MG

; smatch D2 Ga DD GGa MG).
smatch (D 4= G) Ga (DD 4= GG) GGa (mg G GG,

MG) 4=-!, smatch D Ga DD GGa MG.
smatch (V D) Ga DD GGa MG 4=!, smatch (D z) Ga DD GGa MG.
smatch (0 D) Ga (0 D) GGa (0 MG) 4=!, bmatch D Ga D GGa MG.

bmatch (DI , D2) Ga (DDj , DD 2 ) GGa MG 4=!, (bmatch D, Ga DD1 GGa MG

; bmatch D2 Ga DD 2 GGa MG).
bmatch (D 4D= G) Ga (DD 4= GG) GGa (mg G GG,

MG) 4=!, bmatch D Ga DD GGa MG.
bmatch (V D) Ga (V DD) GGa MG .0=!, bmatch (D x) Ga (DD y) GGa MG.
bmatch (0 D) Ga (0 D) GGa MG .=!, bmatch D Ga D GGa MG.
bmatch Ga Ga GGa GGa true.

Figure 8.8: Generalizing meta-interpreter: Clause analysis.

from the Gs's of the first interpreter to the current MG's comes out of the need to maintain
both G and GG for subsequent solution. The straight-forward clauses metawsolve and
metassolve that interpret MG's are given within Figure 8.9.

After solve selects a clause D with which to derive Ga, the extended match predicates of
Figure 8.8, attempt to apply D in the solution of Ga. But in the course of deriving Ga, the
new match also yields a generalized atomic goal GGa and a generalized clause DD sufficient
to establish GGa. Within the final clause of wmatch where Da is unified with Ga, DD is
instead unified with GG. That neither the pair Ga and GGa nor the pair Da and DD are
unified is essential for generalization: DD and GG need only be instantiated to the point
that GG necessarily follows from DD.

How then do any of the constants of D (first or higher-order) ever end up in GG or DD?
The answer is that unless some of the D's employed in the proof are boxed, none ever will.
In the matching of boxed clauses, D and DD are explicitly unified in the invocation of
bmatch (for 'boxed-match'): within the suicide problem, for example, both D and DD are
bound to Vz. weapon z 4= gun z. (The additional predicate bmatch is required to handle
subtle differences in the matching of instantiated DD's.) While D and DD are initially
equivalent within bmatch, they may later diverge as distinct new logical variables x and y
are substituted for universally quantified programs. This is because D is to be unified with

Ga, while DD is to be unified with GGa: again for the weapon clause, D's logical variable
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metawsolve true true L
meta-wsolve (MG 1 , MG 2) (DD 1 , DD2 ) 4--!, metawsolve MG1 DD 1,

meta.wsolve MG 2 DD 2.
metawsolve (0 MG) DD 4=!, metassolve MG DD.
metawsolve (mg G GG) DD 4--!, wsolve G GG DD.

meta-ssolve true true .=!.
meta.ssolve (MG 1 , MG 2 ) (DD 1 , DD 2 ) =!, metassolve MG1 DDI,

meta-ssolve MG2 DD 2.
meta.ssolve (0 MG) DD 4=-!, metassolve MG DD.
meta-wsolve (mg G GG) DD o= !, ssolve G GG DD.

Figure 8.9: Generalizing meta-interpreter: Meta-Goal solution.

becomes bound to objl, while that of DD remains uninstantiated.

As both boxed and unboxed clauses are used in the proofs we have developed, the reader
might rightfully expect both to appear in DD, the resulting sufficient conditions of the
generalization. In fact, this is the case: for the goal 0 a =* b =- (a , b), our generalizing
meta-interpreter produces the explanation-based generalization (a, G) #-- 0 a, G. How-
ever, boxed clauses are 'necessarily' true, and hence need not be re-checked during the appli-
cation of a derived rule. Instead, it is the conjunction of the utilized unboxed clauses which
constitutes the simplest expression of the sufficient conditions for GG. Removing boxed
clauses from DD requires a simple reduction predicate, whose definition may be found in
Appendix A.4. The result of simplifying the above (a , G) 4= G. We take this approach as
it is easier to remove boxed clauses from the completed generalization than to avoid their
initial incorporation, since only top-level boxed clauses could reasonably be recognized in
solve. (For the meta-interpreter implementation, these simplification predicates will un-
avoidably destroy degenerate generalizations such as the above - i.e., ones with variables
at the top-level.)

8.7 Operationality

Incorporating operationality criteria within the preceding prototype requires providing the
meta-interpreter with access to an operationality predicate oper. The revision involves
inserting the following clause at the head of the solve predicates. We illustrate the change
for wsolve; an analogous change is necessary in ssolve:

wsolve G GG DD .4= oper G,!,
DD = GG, wsolve.orig G.

where wsolveorig is the version of wsolve that does not perform EBG - i.e., that given
within Figure 8.5. The computation proceeds in the same manner, but EBG is suspended
during the solution of operational subgoals. Instead, DD is bound to the current generalized
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goal GG, which, because it is operational, becomes one of the sufficient conditions of the
resulting generalization. The above clause is expected to be used for recursive invocations
of solve - i.e., during the solution of subgoals; if a top-level goal is made operational, the
resulting explanation-based generalization is trivial.

It is the user's responsibility to specify the computation necessary to determine oper of
particular goals. Should no clauses be provided for oper, the above implementation behaves
in the same manner as the original. And since the definition of oper may be extended in the
course of the current computation, this formulation permits dynamic operationality criteria
(although it does not support the expression of preconditions for dynamic operationality
criteria; see §4.5).

8.8 Assimilation

We demonstrated within Chapter 5 that rule cannot be implemented within AProlog. On
the other hand, the generalizing interpreter of §8.6 illustrates that AProlog is sufficient for
the realization of EBG itself. The question is, then, whether this meta-interpreter can be
extended so that explanation-based generalizations may be learned (i.e., assimilated)? The
answer is no, and the reason, as the reader might expect, is AProlog's inability to universally
generalize: consider that the tentative implementation of lemma-ebg

lemma-ebg G K -# wsolve G GG DD,
((GG .4-: DD) #- K).

typically allows the assimilated generalization to be applied only once (i.e., for one instan-
tiation of its variables).

It is pleasing that lemma-ebg can be implemented in terms of rule and solve:

lemma-ebg G K 4= rule (wsolve G GG DD)
(VG VGG VDD. wsolve G GG DD =* (GG -= DD))
K.

Similarly, consider the following encoding of rule.ebg:

rule.ebg G (0 F) K -# rule (wsolve G GG DD, instan F GG E)
(VG VGG VDD VE VF.

(wsolve G GG DD, instan F GG E)
= (E ,= DD))

K.

where

instan (VF) G D .- instan (Fx) GD.
instan (G => D) G D.

The instan predicate simply replaces universally quantified variables with new logical vari-
ables, and then does the appropriate unification between the generalized goal and the goal
associated with the forward inference step.
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8.9 The Barcan Formula

The Barcan formula, for a higher-order logic, is as follows:

(Vx. 3 (Px)) =. (0 Vx. Px)

While the converse of Barcan - that is,

(0 VX. Px) o (Vx. 0 (Px))

is true in all modal logics, the validity of the Barcan formula varies. Under A0 Prol;,g's
inference system, the Barcan formula is indeed valid.2' ,3

Although in terms of the logic there is no difference between the left- and right-hand sides
of Barcan, the generalization algorithm does distinguish the two. That is, the relative order
of 0 and V, while not affecting provability, can affect EBG! In particular, variables whose
universal quantifiers are outside of 0 are not abstracted within the generalized proof. To
illustrate, we once again employ the suicide example of §4.2: If the clause

!! weapon z .= gun z.

which is simply shorthand for

C Vz. weapon z 4= gun z.

were replaced instead with

Vz. 0 (weapon z := gun z).

the resulting generalization becomes

!! kill x x 4= depressed x, buy x objl, gun obji.

The reader's initial impression may be that the above violates the partition established
between domain and training theory, since objl only appears in the latter, but yet makes
its way into the derived rule. Observe, however, that the universal quantification Vz occurs

2It is also the case that S5 includes Barcan.

3 Disallowing the Barcan formula would significantly complicate the inference system. Consider that the
ordering of V and 3 is presently irrelevant. An alternative inference system not admitting Barcan would
have to maintain the additional context of whether or not universal variables occurred within the scope of
a 0.

Similarly, the manner in which universal variables are treated in AProlog would complicate disallowing
Barcan. The problem is that quantifiers are not maintained during computation, but rather are replaced
by special place-holding uvars, for 'universal variables.' This means that the problem of maintaining scope
inside or outside of C would require two distinct kinds of uvars: one for z, and the other for y within
Vx. C Vy. D.
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outside of the 0, and thus the clause incorporated within the generalized proof does not

include that quantification. Instead, the utilized clause may be viewed as

o (weapon z = gun z).

Because the universal quantification occurs within the training theory, we chose not to

universally generalize z within the domain theory. This decision really just provides an

additional level of expressiveness: for the large majority of situations, users will presumably
want the original interpretation, which is easily achieved with the !! notation.

As an aside, if we were to instead require that EBG not discriminate between the left- and

right-hand sides of Barcan, we would thereby avoid the need for the !! notation: consider
that

!! weapon z 4= gun z.

is equivalent to

o Vz. weapon z 4- gun z.

which is equivalent (under the Barcan formula) to

Vz. 0 (weapon z .4= gun z).

which, in turn, can be expressed as simply

0 (weapon z €= gun z).

by relying upon AProlog's implicit universal quantification of top-level clauses. It is unclear,
however, whether this alternative EBG algorithm could be realized through revisions to the
generalizing meta-interpreter of §8.6.
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Chapter 9

A Prolog Implementation

In §3.4.3 we made mention of eLP, the implementation of AProlog written in COMMON Lisp
and developed at Carnegie Mellon University by Conal Elliott and Frank Pfenning in the
framework of the Ergo project [38]. Then within §8.5 and 8.6, we introduced interpreters
written in AProlog for the modal logic A0Prolog and for that logic extended with explanation-
based generalization.

These prototype implementations of A0Prolog have been extremely valuable for experiment-
ing with different variations of both the logic and the EBG algorithm, and moreover for
providing a formal specification of each. They are, however, extremely slow due to the
additional level of interpretation, which also precludes the application of lower-level imple-
mentation strategies (such as hashing rules based upon predicate names). Such optimizations
are not directly expressible within AProlog (that is, not without substantially complicating
the encoding). Furthermore, these meta-interpreters are not sufficiently powerful to handle
AProlog primitives (e.g., cut and arithmetic), or to realize the !! convention, or to imple-
ment our primitives for initiating and controlling generalization and assimilation, rule and
rule.ebg (Chapter 5).

We have addressed these deficiencies by extending our existing ) Prolog interpreter, eLP,
with 0, !!, rule, and ruleebg. The nature of these extensions is the topic of this chapter.

9.1 Implementing 0

The first addition we made to eLP was the modal logic operator 0. The necessary extensions
to the eLP interpreter largely follow the abstract A0Prolog interpreter developed in §8.5:
goals are subject to two levels of solution - strong (for boxed goals) and weak (for unboxed),
and similarly, boxed clauses and subclauses applied in the course of a proof are distinguished
from their unboxed counterparts. Rather than supplying two pairs of COMMON LISP routines
analogous to wsolve & ssolve (which reduce complex goals to atomic ones), and wmatch &
smatch (which use the logic program to derive atomic goals), we simply included a boolean
context argument within the corresponding interpreter routines.
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AProlog clause normal-form. eLP employs the normal-form representation of AProlog

clauses described in §3.6: recall that Dnf may be defined as

Dnf ::= DvI Dnf , Dnf
D ::= #I Vx. Dv

D,=::=A=G

In this way, P is mapped to a set of clauses such that each D may be represented as an

atomic clause-head A, a goal precondition G (which implies A), and a list of universal
variables X over which D is universally quantified. The motivation for using Dnf is two-fold:
(1) clauses may thereby be simply represented as three components - A, G, and X, and
(2) the relevance of a given clause to a particular atomic goal Ga may be easily determined
by unifying Ga and A.

Once general G-forms have been reduced to atomic ones, the eLP interpreter operationally
proceeds as follows:

" Select a set of clauses from P which may be applicable to the solution of Ga. This
step includes insuring that A and Ga begin with the same predicate, and potentially
makes use of further matching optimizations such as indexing (whereby subterms of
Ga are matched against pre-selected subterms of A).

" Create new logical (or existential) variables X for each universal variable in X, and
then substitute X for X in A and G, yielding A and G.

" Unify A and Ga. If unsuccessful, backtrack and chose another clause.

" Recursively solve G.

A Prolog clause normal-form. For the same reasons as within eLP, we desire to make
use of a normal-form for A0Prolog clauses within OeLP. Recall that within §8.2, we developed
the following A Prolog normal-form:

Dnf ::= ,Dnf I D

D ::= Vx. Dv A 4Gw I (DDov) 4-Gw

Day ::= V.Dc j A <-G

A0Prolog clauses may thereby be represented either in the preceding AProlog normal-form,
or else as an atomic clause-head A, a weak enabling goal Gw1, a strong enabling goal Gs
(either of which may be true in the degenerate case), a set of universal variables X that
appears outside the scope of the optional 03, and a set of universal variables Y that appears
within the scope of 0.

Rather than actually maintaining two normal-forms, [eLP uses the extended normal-form
with the additional inclusion of a boolean flag indicative of weather the original clause
contained 0. This distinction is necessary in order to differentiate (0 A) #= G and A #= G,
as the former is sufficient for deriving 0 A, while the latter is not.
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As within eLP, \'Prolog goals are reduced to atomic subgoals for solution, as the meta-
interpreter of §8.6 illustrates. Once goals have been so reduced, the operational behavior of
the OeLP interpreter may be characterized as follows (as summarized in §8.3):

* Select a series of clauses from P which may be applicable to the solution of Ga. If Ga
is being strongly solved, we may ignore clauses of the unboxed normal-form; i.e., those
that do not contain 01.

" Create new logical variables V and S for each universal variable in W and S, and
then substitute ;V for W and S for S in A, G, and Gs, yielding A, Gw, and Gs,
respectively.

" Unify A and Ga. If unsuccessful, backtrack and chose another clause.

" For strong solution, solve (Gw , E3 ds). For weak solution, solve (Gw , 6s).

The '!!' notation. In order to ease programming within our A'Prolog prototype, we
included the! ! convention (introduced in §4.3) for top-level A0Prolog clauses. The realization
of ! ! is particularly straightforward, as it simply requires merging 'P1 into S within the above
representation.

9.2 Implementing "rule"

In Chapter 5 we established that because there is no provision for universally quantifying
existing free variables, rule is not implementable within a AProlog meta-interpreter. Thus
for us to actually experiment with the construct and to run the examples we have presented,
it was necessary to implement rule within eLP.

Recall from §5.3.2 that the alternative operational definition of

P- rule G (V. G~* = Dx) K

is as follows:

1. Create new logical variables t for each universal variable in X, and then substitute
t for X in Gx and DX, yielding Gt and Df.

2. Unify G and Gt.

3. Solve G.

4. Let Y = free(G) - free(P)

5. Solve (VX.VY. Dt) = K.
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VX is correct as those variables of X which rule has instantiated no longer appear free in
De (a side-effect of unification).

The implementation of rule within this framework is straightforward, save for two consid-
erations:

" Correctly limiting Y so that that the derived assumption is not over-general in that it
universally generalizes variables free within pending assumptions.

" Handling the heretofore unaddressed topic of higher-order constraints.

9.2.1 Variables Free in Assumptions

We emphasized in Chapter 5 that the universal generalization step associated with rule
must not quantify variables free in assumptions (i.e., within P), as such a generalization
violates the declarative nature of the rule construct. The most straightforward solution
would be simply for OeLP to maintain a set F of all the variables currently free in P. This
would require that before making the local assumption D, that % first be augmented with
any variables free in D. (Subsequent instantiation of variables within F does not pose a
problem, as instantiated variables no longer occur in goals and clauses.) rule's universal
generalization step, then, involves subtracting this set from the candidates for universal
generalization.
A problem with the above strategy is that it is potentially computationally expensive. A
second alternative is to maintain the set of local assumptions (that potentially contain free
variables). To determine which variables to universally generalize, these assumptions are
searched for occurrences of these candidates. While a brute-force approach to this search
would be even more expensive than the preceding algorithm, the use of time stamps on
variables and expressions should substantially reduce this overhead: through time stamps,
older expressions need not be searched for occurrences of newer variables. 1,2

Within the existing system, neither of the above strategies is implemented. Instead, within
our prototype we made the expedient choice of universally generalizing all free variables
within an assumption! This has not proven to be a problem for experimentation, but is
would certainly be unacceptable for anything further.

9.2.2 Constraints

In §5.3.4 we mentioned that higher-order unification requires the accumulation of constraints.
Simply put, such constraints are necessary to represent unifications that do not result in

'For time stamping to be effective, it is necessary that unification cannot result in the instantiation of old
variables with newer ones, as this would require re-stamping the containing expressions. Instead, unification
is realized by binding newer variables to old.

2Didier Rainy of INRIA has shown that time stamping leads to substantially improved performance for
the related problem of closing type variables within the ML let construct.
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variable instantiation: recall from §3.2 that fa = gaa allows the variable f to be instantiated
with any of Ax.gaa, Ax.gxa, Ax.gax, or Ax.gxz, none of which is an instance of another.
Similarly g could be instantiated with Ax.Ay.fa, Ax.Ay.fx, or Ax.Ay.fy. By representing
fa = gaa as a unification constraint, subsequent computation is free to instantiate f or g
with any of the above.

Since these constraints are essential to the process of higher-order unification, they must
be incorporated within the assumptions derived through rule. Within eLP, constraints are
passed along as part of the interpretation environment. This is why, for example, we did
not need to treat them within our meta-interpreters of Chapter 8: that detail of A0Prolog
implementation was handled directly within AProlog. However, the universal generalization
of variables disqualifies the existing OeLP constraints. Thus we need a means by which to
capture the persistent constraints required by rule.

Within the D-forms assumed by rule in QeLP, constraints are represented simply as a con-
junction of higher-order (unification) equations over AProlog terms. Hence, as mentioned,
the actual form for rule's assumption is VX'Vy. yxODX --# 3Z. Cz, where Cz is the con-
junction of the pending constraints, and Z represents all variables occurring only in Cz. We
return to this topic in §9.3.2.

9.3 Implementing "rule.ebg"

Recall from §5.4, the eLP-oriented operational interpretation of

rule-ebg G (3 VX. Gx =- Dx) K

is as follows:

1. Solve G with EBG enabled, resulting in the explanation-based generalization

3 VY. OGGy ,4= ODDy.

2. Create new logical variables , for each universal variable in X, and then substitute
X for X in GV and DM, yielding Gf and De.

3. Create new logical variables Y for each universal variable in Y, and then substitute
for Y in GGy and DDy, yielding GGS, and DDi,.

4. Unify GGS and Gt.

5. Solve (0 VY. V,. Dt4 - DD,) = , K.)
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wbolve ! true t= !.
wsolve (once G) (once GG) DD 4--!, once (wsolve G GG DD).
wsolve n1 n1 true 4=!, n1.
wsolve (writesans S) (writesans SS) true .:=!, writesans S.
wsolve (write M) (write MM) true €!, write M.
wsolve (read G) (read GG) DD =!, read At. 3tt.

wsolve (G t) (GG tt) (DD tt).

Figure 9.1: Generalizing meta-interpreter: Special goals.

9.3.1 Specials

We have defined explanation-based genera!ization over computation expressed in the logic
of A0Prolog, but we have not discussed how a generalizing interpreter could handle extra-
logical features, such as !, input/output, or arithmetic. Cut and input/output are especially
relevant as they have been used to define the interactive problem solvers introduced in
Chapters 6 and 7. Yet, these extra-logical constructs do not appear in the explanation-based
generalizations we have illustrated thus far. This is because the programs that include these
features, for example the interactive tactical of §6.1, are boxed, and therefore do not occur
in the resulting derived rules.3

Implementing generalization over these constructs is problematic in that they can not be
realized at the level of our abstract interpreter. Essentially, specials are handled by executing
them for the particular case (i.e., the current goal), and incorporating an analog within the
associated generalization. Figure 9.1 illustrates this strategy in the treatment of several
pertinent AProlog specials within the generalizing meta-interpreter of §8.6.

9.3.2 Higher-order Constraints and EBG

Just as for rule, the higher-order constraints associated with an explanation-based general-
ization must be represented in the D-form assumped by rule-ebg, and as you would expect,
this is handled in an identical fashion.

Complexity of higher-order constraints. However, the constraint sets that result
from EBG tend to be substantially more complicated than those associated with rule.
Appendix A.7 gives a listing of the most complicated set of constraints we have yet en-
countered: that resulting from the program transformation scenario of Chapter 7. Even to
those well-versed in AProlog, these constraints are inscrutable.

For more complex higher-order generalizations to be truly useful, methods must be devised
for making higher-order constraints more palatable to the programmer. There remains the

3 Nevertheless, the EBG algorithm as we have defined it initially includes specials that occur within boxed
clauses in DD, its accumulator for EBG preconditions (§8.6). These are then removed in the course of the
simplification that eliminates necessarily true (boxed) preconditions
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possibility (discussed briefly in Chapters 3 & 10) that higher-order unification (and hence
EBG), as it is presently defined, is too general to be of value for more complex situations.
Perhaps a more restricted unification algorithm could effectively capture the generalization
without yielding an inscrutable result. In other words, higher-order unification may itself be
such a rich mechanism that explanation-based generalizations based upon it are potentially
over-general. For now, the question remains open.

Performance. There is a more practical concern following from the complexity of these
higher-order constraints, and that is performance. Somehow our explicit representation of
higher-order constraints as A-term unification equations can lead to substantially increased
computation costs, again for our more complex examples. In fact, for the program trans-
formation illustration of Chapter 7, the application of the explanation-based generalization
takes longer than its generation! Obviously this is grossly unacceptable for anything more
than a experimental system, since it violates one of the primary missions of EBG - improv-
ing performance.

There are a couple of contributing factors to this performance degradation. One expects
that the computation involved in applying an explanation-based generalization to a goal
should be a subset of that required to solve the goal without generalization. Given this,
the observed performance loss must demonstrate inappropriate representation choices for
the derived generalizations. From this, it is easy to target the complex constraint equations
associated with the derived rules in question. We believe that the additional overhead
incurred through our explicit representation of constraints as A-terms is at least partially
responsible. In particular, this inefficiency may be the result of information lost in the
copying of terms (for example, once identical ("eq") terms becoming merely equivalent).
If this is correct, effective performance will require better data structures for maintaining
constraints across A0Prolog computations.

The above is particularly problematic when combined with a limitation of eLP's present
higher-order unification algorithm - it can behave eagerly in its commitment to particular
solutions [39]. When the unification algorithm makes the wrong guess, significant amounts
of backtracking is required. For the larger constraint sets, this cost may be substantial.
Instead, what one would like is maximally lazy urification.

While the above speculation is not satisfying, we believe that the exploration of higher-order
constraint representation and satisfaction is itself a substantial research problem. Thus far,
our efforts have focused on defining the language and learning mechanisms of A'Prolog.
We anticipate that the further study of higher-order constraints and unification will lead
to scrutable encodings and fast algorithms. Indeed, the long term relevance of this work is
dependent upon success in this area.
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Chapter 10

Conclusion

10.1 Summary

As stated at the outset, this thesis should broadly be viewed as a language design effort.
The result, X'Prolog, encompasses extensions to \Prolog that afford rudimentary modal
reasoning, higher-order EBG, and logically-motivated constructs for controlling generaliza-
tion and assimilation. By incorporating learning mechanisms within the logic programming
language, \'Prolog defers to the programmer the problem of determining when to learn. It
is our belief that only the system designer is generally positioned to effectively address this
problem, leveraging his familiarity with both the problem domain and the problem solver.
Thus, while \'Prolog is not itself a learning system, it is intended to serve as a high-level
foundation for the implementation of such systems.

Through the framework of A'Prolog, this thesis offers a number of contributions:

" The use of the modal operator 0 to provide an alternative formulation of EBG.

" The extension of the EBG algorithm to treat a higher-order representation language,
and then formulation of higher-order EBG via a A0Prolog meta-interpreter.

* A logically-sound mechanism, rule, for universal generalization within logic programs.

" A generalization of the rule construct, rule-ebg, to afford EBG.

* The integration of all of the above in an environment that supports user-guided problem
solving and learning.

" A prototype implementation OeLP.

" A suite of examples.

Just as this thesis borrows from a number of different areas, we believe its results are relevant
to a range of research efforts: formal methods for higher-order domains (e.g., program
development, theorem proving, and natural language); AProlog and logic programming;
explanation-based generalization and machine learning; modal logic; and language design in
general.
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10.2 Future Work

10.2.1 Further Experimentation with ArProlog

While we have presented a number of examples in the course of developing this thesis, the
majority of our efforts have been devoted to constructing the A'Prolog framework rather
than exploring its application. Thus, one of the primary future directions is further exper-
imentation. AProlog is currently being used as a research vehicle in a number of different
areas: logics, programming languages, and natural language [106, 88, 85, 103]. It would be
interesting to further consider what impact A'Prolog can have on these domains, particularly
since other researchers have already done the lion's share of the necessary formalization by
programming in AProlog. A particularly attractive domain to which we have as of yet given
only cursory consideration is the proofs-as-programs paradigm introduced in §2.1. Like the
other domains considered herein, proofs-as-programs is interesting to consider because of the
relevance of higher-order expressivity and the reliance upon interactive proof developmen.

In another direction, we have done relatively little in the way of re-implementing examples
from the EBG literature. This, of course, is because we have been primarily focused upon
the higher-order domains that initially motivated our work. However, another worthwhile
means of exercising A'Prolog would be to consider the encoding of more extensive first-order
problems. Of particular interest is the further consideration of the possible interplay between
the 0 operator and dynamic operationality criteria.

Of the many remaining questions, perhaps the predominant one is whether a relatively
complete, higher-order apprentice learning system can be effectively realized within A Prolog
(or within any other language, for that matter). While we have provided example scenarios
in Chapters 6 and 7, we have not yet produced such a system. This is in part due to
limitations within our present implementation, both in terms of performance (discussed in
Chapter 9), and in terms of functionality, such as the lack of a mouse interface (discussed
in Chapters 7). This is also, of course, due to time constraints.

10.2.2 Practical Considerations

In Chapter 9 we raised a number of limitations that presently hinder A'Prolog application
to more complex domains:

* Higher-level support for interaction

" Higher-order unification, constraints, and lazy unification

Another issue is that of instrumentation for performance measurement and analysis: while
we have deferred to the programmer the task of determining when EBG is invoked and how
its results are exploited, A'Prolog does not provide the designer with the facilities required
to guide this process and ensure that performance actually improves. While we have not
investigated the issue, we believe that such tools could be smoothly integrated with A'Prolog.
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10.2.3 Future Work on AProlog and Explanation-Based Gener-
alization

AProlog and EBG axe fundamentally melded within this dissertation, yet each continues to
evolve through current research:
For AProlog, among other efforts, Miller is presently considering the restriction of AProlog to
a subset L\ that admits decidable unification and most general unifiers. It is unclear to what
extent explanation-based generalizations of L\ computation are themselves legal L\ clauses.
There remains the possibility, however, that LA's restrictions upon higher-order unification
would address the problems associated with complex higher-order constraints (see §9.3.2).
For EBG, in addition to work we have already cited, researchers axe presently extending the
paradigm to generalize from failure as well as success [25], and to more effectively generalize
over iterative and recursive computations [19, 118]. (To illustrate the inadequacy of A'Prolog
in this latter respect, consider from Chapter 6 that the explanation-based generalization of
the repeat tactical commits to the particular number of iterations used within the example
solution.)
Even more speculatively, and of particular interest to us, is the further development of the
'language-based' approach to learning (of which A'Prolog is an exemplar) to encompass other
EBG methodologies, other paradigms of generalization (e.g., similarity-based methods [65,
12]), and analogical problem solving techniques [10, 15, 23, 57, 98].

10.2.4 Logical Foundations of 0 and EBG

While we have defined an interpreter for A0Prolog, we have not considered the underlying
modal semantics of our intuitionistic calculus. What, for example, is its relationship to
S4 and S5 [16, 69]? Also, the higher-order EBG algorithm we have illustrated should be
verified. Finally, it is worth further considering the formal relationship between 0, EBG,
and operationality criteria.

10.2.5 Incorporating "rule" and "rule-ebg" within other Logic
Programming Languages

On an alternative front, one could consider the incorporation of rule (and also rule-ebg)
within Prolog as a declarative alternative to assert and retract. Assuming the necessary
syntax to express variable binding (for the second argument of rule), rule could be directly
added to Prolog. Presumably, this would be accomplished without the addition of impli-
cation and the explicit scope K, but instead by extending the program in the manner of
Prolog's lemma (introduced within §5.2.1). The implementation would be substantially
easier than in AProlog, since Prolog programs are always closed, and thus we can sim-
ply quantify over all logic variables (in the manner of assert) without having to check for
variables free in current assumptions. The implementation problems posed by rule in the
context of Prolog are thus very similar to those associated with assert, and variations on
the techniques proposed by Lindholm & O'Keefe [79] are applicable.
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10.2.6 Logical Foundations of "rule" and "ruleebg"

Intuitively, logic programming proofs require the repeated solution of instances of common
goals. More formally, the execution of a logic program usually produces what is known as
a cut-free or normal proof of the query (actually, they belong to the even more restrictive
class of uniform proofs [86]). This is no longer true for a language extended with rule
and rule.ebg, wherein derived proofs may be substantially shorter than non-normal proofs
(which is the reason why rule and rule-ebg are effective). Can we characterize the class of
deductions which can be found by programs employing rule? By those using rule-ebg? Is
there a way to extend these constructs within the logic programming paradigm so that even
more general deductions can be found?
Finin, et al. have considered a more complete integration of forward and backward chain-
ing [46]. Their approach supports extended computations in both directions by allowing
the programmer to write both forward and backward chaining Horn clauses. We do not see,
however, a way to express the interplay between forward and backward reasoning required by
rule within their language. It would be interesting to consider whether their approach could
be fruitfully combined with the higher-order constructs and scoping available in AProlog,
and then also with rule and rule.ebg.

10.2.7 Ramifications of "rule"

Dale Miller has pointed out that rule permits the formulation of at least the extra-logical
predicate flexible (flexible is the higher-order equivalent of var): flexible M indicates
that M's head is a variable - that is, that M can be unified with any term. He provides
the definition

flexible M c= Vp, q. (Vx. p x) =* rule (p M) (Vx. p x =: q x) (Vx. q x)

In some ways, flexible's extra-logical nature makes A'Prolog less declarative:

- flexible X, X = a.

succeeds, while

? - X = a, flexible X

does not.

10.2.8 Alternatives to "rule" and "ruleebg"

There are a few examples closely related to the ones we have given herein for which rule
and ruleebg do not appear to be powerful enough. The problem is that it is not possi-
ble to translate the universal quantifiers introduced during the universal generalization step
into explicit quantifiers at the object-level. That is, there is no means by which the univer-
sally quantified assumption can be accessed by the program. Finding a declaratively and
operationally satisfactory solution is yet another topic for future research.
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Appendix A

Some Unabridged Examples

Within this Appendix we include the unabridged AProlog source code that produced many
of the examples upon which this dissertation has so heavily relied.

Notation. Up to this point, I have made a substantial effort at attractively typeset AProlog
syntax. However, this does not seem to be a worthwhile endeavor for the more extended
examples to follow. Thus, it becomes necessary to introduce the ASCII-restricted syntax of
eLP - our implementation of AProlog described in Chapter 9.

Instead of italics and boldface, eLP A-term variables begin with an uppercase character,
while A-term constants are lowercase. This same distinction is make for type constants and
type variables. In fact, the only exception is that variables explicitly bound by A may be of
either case (since constants may never follow a A).

A-abstraction is represented with \, which binds the variable preceding it; that is, \ acts as
an infix A, such as within x:A\y:B\(f x y), which is equivalent to Ax:A.Ay:B.fxy. (This
is probably the most difficult aspect of eLP syntax to get used to.)

The following table summarizes the mapping from TEX to ASCII:

AProlog eLP

C C

X X
-- 4 ->

Ax. X\
Va. pi x\
3x. sigma x\
o3 box

xa  expn x a
x/a x div a
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A.1 Clause simplification

module simplify.

type false 0.
type siaapl o o>0- 0.

type simpli 0 o>0- 0.

simpi true true I
simpl (El R 2) N ! simpi, HI Eli, simpi R2 12i,

simpll (Eli , H2i) ff.
simpl (Hi H2) I I simpi El Eli, simpi R2 H2i,

s5mpl (li ; ff2i) R.
simpl (HI => 32) 1 ! simpi El Ili, 3impl 12 H2i,

simpl (Ili => H2i) R.
simpi (pi Hi) I 1, pi x\(simpl (Ei x) (Eii x)),

simphi (pi Eii) R.
simpl, (sigma Ii) R I pi x\(simpl (Hi x) (Eli x)),

simphi (sigma Eli) E.
simpi (box IiO H !, simpi Ii Eii,

simpli (box Eli) H.
simpi Ra Ha

simpli true true - .

simpli (true , 12) H2
simpli (El , true) Ii
simpli (false , 12) false -

simpli (Hi , false) false -

simpli (true ; N2) true-
simpli (Hi ; true) true
simpli (false ; K2) B2
simpli (El ; false) 31

simpli (true => 12) 12-
simpli (El => true) true -.

simpli (false => 12) true-
siaphi (NI => false) false -

simpli (pi A\ true) true-
simpli (sigma A\ true) true-
siuphi (pi A\ false) false -

simpli (sigma A\ false) false -

simphl (box true) true -I

simpli (box false) false -

siuphi B N -l
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A.2 Rudimentary Resolution Theorem Prover

This implementation incorporates a unit strategy - that is, use smallest clauses first. It
relies upon user interaction to control the whole process.

module resolv..unit.
import simplify.

type clause-, o -> jt -0.

type min-.clause o- int ->0.

type miu..clause.aux o -> t -> jt -> 0.

type resolve 0 o> -> o -> 0.

type rtp 0.
type rtp.aux o -> t -> o -> o.

type write-.clauses 0.

resolve (P ;Q) S (P R ) resolve Q S R.
resolve (P ;Q) S (Q ;R) resolve P S R.
resolve S (P ;Q) (P ;R) resolve Q S R.
resolve S (P ;Q) (Q ;R) resolve P S R.

resolve P Cnot P) false.
resolve (not P) P false.

in-n.clause P P# : min-.clause-.aux P P# 1.

min..clause..aux P P# Size :
(clause_ P Size, Ps Z size)
(Size < 10, Sizel is Size + 1. min-.clause-.aux P P# Sizel).

rtp :-rule (rtp-.aux R R# G)
(pi R\ (pi RA\ (clause. R RS#: rtp-.aux R R# G)))
G.

rtp..aux R R# G
min-.clause P P#,
min-.clause Q Q#,

resolve P Q R1, simpl Ri R.
R# is ((Ps#+Q#) -2),
not (clause- R R#), %% This is a hack, cne may be an instance of the

%.Y. other.
all
ul, writexans "First clause :, write P,
ill, writesaus "Second clause :, write Q,
ni, vritesans "Resolved to :, write R,
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al. writesaus "Assumue resolvent? [y,r,q,tJ "

read ans\ ( (an. = n, fail) %% no cut here, we want to
%% backtrack

(an. = q. ! G =vrite.clauses)
Cans = t, G, = top)
(ans = y, , G =rtp)).

write-.clauses
ul, ni, writesans "Resolution complete",
ml, ni, uritesans "Clauses: 11, !,
C(min-.clause R R#, ni, writesans " ,write R, fail) ;nl).
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oval true true
oval (GI G 62) (G3 , G4) o!, val GI G3,

Oval G2 G4.
oval (Gi ; G2) G :-!, (oval Gi G; eval G2 G).

eval (D => G) G1 !,ndform D D1, hyp DI => eval G G.
oval (pi G) (pi G1) : , pi X\ (eval (G 1) (G1 X)).
oval (sigma G) (sigma GI) , oval (G X) (GI X).

eval Gatom SubG hyp D,
select D (Gatom :- SubG1),
eval SubG1 SubG.

oval Gatom SubG Gato., SubG = true, !.
eval Gatom Gatom.

Figure A.1: Evaluator.

A.3 Partial evaluator for AProlog

The section contains a more thorough development of the partial evaluator peval originally
presented within §4.6. We also provide a more extensive application of peval: the partial
evaluation of a interpreter with respect to a particular object language.

A.3.1 A AProlog Evaluator

To simplify the presentation of the partial evaluator, we first introduce a AProlog evaluator
given in Figure A.1. To a large degree this evaluator follows both the original presentation
of peval and the AProlog meta-interpreter (§8.5). We include it nevertheless for the sake of
completeness.

The predicate eval reduces one goal (its first argument) to another (its second).1 In the
last three clauses of eval, an atomic goal is reduced either (1) by applying a relevant clause
from the object-logic program Pob (enumerated via hyp), (2) by evaluating it directly in
AProlog, or (3) by a no-op. For (1) the select predicate, the code for which may be found
in Figure A.2, nondeterministically selects a candidate clause to reduce the goal Ga. select
replaces universal variables with new logic variables to facilitate the unification of the clause
head and G.. For (2) we avoid coding the evaluation of special goals (e.g., !, =, or arithmetic)
by realizing them directly (i.e., reflecting them) within AProlog. (To be practical, the above
evaluator should also simplify the result of evaluation before yielding an answer.)

'While we could accurately use the term 'meta-evaluator' (since both the object- and meta-language are
AProlog), it would become cumbersome when we turn to discussion of the 'partial-meta-evaluator.'
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select Do D select-and Do D.

select-and (DI . D2) D , (select-and DI D;
select-and D2 D).

select-and DI D select-pis D1 D.

select-pis (pi D) D 1, select-pis (DI X) D.

select-pis D D.

Figure A.2: Clause selection.

A.3.2 A Partial Evaluator

The partial evaluator of Figure A.3 is identical to the evaluator, except that rather than
directly applying clauses (1) or directly interpreting goals in AProlog (2), peval queries
the user before committing to any such operation; that is, peval is a user-guided partial
evaluator. Those queries are handled by the auxiliary predicates given in Figure A.4.

This brings us back to the primary distinction between PE and EBG: partial evaluation
requires substantial amounts of search control in order to produce interesting specializations.
The partial evaluator includes no notion of V and T, but the same results may be achieved
by explicitly not partially evaluating goals reduced by specific clauses.2 Deriving all the
rules that can be produced through PE is equivalent to finding the deductive closure of a
logic program. (Of course, heuristics can potentially reduce this problem by guiding PE
toward more interesting specializations.) EBG, on the other hand, uses an example solution
(as well as 0 and operationality criteria) to determine what combination of clauses will in
essence be partially evaluated.

If the partially evaluated logic program is again to be interpreted (e.g., through eval &
peval), the following top-level is sufficient: (Recall that all object clauses are accessed
through the predicate hyp.)

peval.top E (E :- G)
rule (peval E G)

(pi E\ (pi G\ (peval E G -> hyp (E :- G)
top.

A.3.3 An Example Application

As a more extended example of partial evaluation and reflection, consider the meta-interpreter
of Figure A.5, which is taken from Takeuchi & Furukawa [127]. (The concept is bor-
rowed from Shapiro [117].) This meta-interpreter combines uncertainty or confidence fac-
tors with its solution of goals. We shall apply this meta-interpreter to the object-program

2 Actually, this is not quite the case, since PE is like operationality criteria in that it does permit internal

proof steps to be abstracted from the generalized proof (§4.5) as does our formulation of EBG.
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peval true true I
peval (GI G2) (G3 ,G4) :-, peval GI G3,

peval G2 G4.
peval (GI; G2) (G3 ;G4)Q peval GI G3,

peval G2 G4.
peval (D=>G) G1 - ndform D D1, hyp DI z> peval G G1.
poval (pi G) (pi GO) 1- pi A\ (peval (G X) (GI W).
peval (sigma G) (sigma Gi) !, peval (G X) (G1 X).

poval Gatos SubG hyp D,
select D (Gatos : SubG1),
do-.rule Gatom (Gatos : SubGi) SubG.

peval Gatom SubO : do-.bottom Gatos SubG.
peval Gatom Gatos.

Figure A.3: Evaluator.

do-.rule Gatos (Gatos :-SubGl) SubG : ni,
al, writesans "Goal to be partial evaluated: ", iii,

writesans "1 ", write Gatos, ni,
nl, writexans "Selected rule: "1, zil,
writesans " ,write Gatos, writesans " ,nl,

writesans "", write SubGi, nl,
ul, writesans "Use this rule? (y~n~s~eJ "

read ans\
(Cans = s, I SubG =SubGi)

Cans a n, f, ail)
Cans = y, !, peval SubGi SubG)
Cans = e, !, eval SubGi SubG)
(!n, nl, writesans "Illegal command: ",write ans, ul,

do-.rule Gatos (Gatos :- SubGl) SubC)).

do-.bottom G SubG :- nl,
nl, writesans "Goal to be partial evaluated: ", ill,
writesans 11 1, write G, nl,
writesans "No more rules apply.", ul,
writesans "Evaluate it directly in eLP (e.g., 'i''<) y~nJ
read ans\

(Cans = n. I SubG = G)
Cans = y, IG, SubG = true)
(!n, ul, writesans "Illegal command: ", write ans, nl,

do-.bottom G SubG)).

Figure AA4: Partial Evaluator.
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module meta-medic.
import lists.

type solve 0 -> list int -> 0.
type mrule o> o -> int ->o.
type ct int -> list int -> int -> 0.
type product list int -> int -> int -> 0.
type efrule o -> int -> 0.

rsolve true (100 nil).
msolve (A , B) Z msolv. A X, msolve B Y, append X Y Z.

masolve (not A) (Cf nil) : solve A (C :: nil), C < 20, Cf is 100 - C.
msolve A (Cf nil) -rule A B F, msolve B S, cft F S Cf.

cft X Y Z :- product Y 100 Y1, Z is ((X * YI) div 100).

product nil A A.
product (X :: L) A 11 :- B is (( * A) div 100), product L B Xl.

rule A B F :- cfrule (A :- B) F.
mrule A true F c-cfrul.e A F.

Figure A.5: Meta-program with certainty factors.

of Figure A.6, which is concerned with the prescription of drugs (and is also taken from
Takeuchi & Furukawa [127]). For example, eval permits the solution of the following goal

C hyp (cf.rule (suffers.from scott peptic.ulcer :- true) 0 :- true),
hyp (cf.rule (complains.of scott pain :- true) 100 :- true)

) -> oval (esolve (should-take scott aspirin) Cf) G

yielding G = true and Cf - (42 :: nil).

This meta-interpreter may be partially evaluated with respect to this object program, certain
results of which are illustrated within Figures A.7 & A.8. (Each of these derived clauses is
reported in Takeuchi & Furukawa [127]. We duplicate their results here because the examples
are informative, and more importantly, that the results illustrate an application of rule.)

It is essential to understand that we are herein dealing with three levels of language: peval,
the meta-interpreter msolve, and the medical object language. One problem with always
interpreting the results of partial evaluation is simply the extra cost incurred through this
extensive layering of language.3 As we have discussed, the solution is to reflect the program
being manipulated (in this case, the combination of meta- and object-program) into the
logic program, and thereby run it directly. This may be accomplished via a previously listed
revision to our top-level:

3This factor depends upon the nature of the interpreter and object language, but between one and two
orders of magnitude appears to be typical for AProlog.
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module medic.
import meta-~medic.

kind person type.
kind drug type.
kind symptom type.
kind condition type.

type should-.take person ->drug o> .
type complains-.of person ->symptom -> a.

type suppresses drug -> symptom -> o.

type unsuitable drug ->person -> o.
type aggravates drug ->condition -> o.

type suffers-from person -> condition -> o.

ci..rulo (should-.take Person Drug :- complains-.of Person Symptom,
suppresses Drug Symptom,
not (unsuitable Drug Person))

70.
cf-.rul. (suppresses aspirin pain)

60.
ef-rule (suppresses lomotil diarrhoea)

65.
c:2-.rule (unsuitable Drug Person :-aggravates Drug Condition,

suffers-from Person Condition)
80.

cf-rule (aggravates aspirin peptic-.ulcer)
70.

cf-.rule (aggravates lomotil impaired-.liver-.function)
70.

Figure A.6: Object- programn.

131



msolve (should.take Y1 Y2) (Y ::nil)
aolve (complains-.of Y1 YS) Y6,
mealv. (suppresses Y2 Y3) Y9,
moolve (unsuitable Y2 Y1) (Y11I: nil).
Y11 < 20, YIO is 100 - Y11,
append Y9 CYlO ::nil) YT, append Y6 Y7 Y4,
cft 70 Y4 Y.

aolve (suppresses aspirin pain) (60 ::nil).
msolve (suppresses lomotil diarrhoea) (85 ::nil).
msolve (unsuitable YI0 Y12) (Y4 ::nil)

msolve (aggravates Y10 Y1i) Y15,
aolve (suffers-f.rom Y12 Yi1) Y17,
append YIS Y17 M1, cit 80 Y13 Y4.

msolve (aggravates aspirin peptic-.ulcer) (70 ::nil).
nisolve (aggravates lomoti. impaired-.liver-..unction) (TO nil).

Figure A.7: Results of partial evaluation.

msolve (should-.take Y7 aspirin) (Y4 ::nil)
msolve (complains-.of Y7 pain) Y12,
msolve (suffers..rom Y7 peptic-ulcer) Y27,
eft 80 (70 : Y27) YI8,
Y18 < 20, Y17 is 100 - YIS,

append Y12 (80 ::Y17 ::nil) YIO,
cit 70 YIO Y4.

maclye (should..take Y7 lomot2.l) (Y ::nil)
maclye (complains-.of Y7 diarrhoea) Y6,
moolve (suffers-.from Y7 impaired-.liver-function) M,
cit 80 (70 :: ) Y15),
Y16 < 20, Y14 is 100 - Y16,
append YS (65 : Y14 ::nil) Y4,
cit 70 Y4 Y.

Figure A.8: Further results of partial evaluation.
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peval..top E CE :-G)
rule (peval E G)

(pi E\ (pi G\ (peva~l E G => (E G))
top.
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A.4 Generalizing interpreter for A0Prolog

For the sake of completeness, we list the unabridged AProlog implementation discussed in
§8.5 & §8.6.

module metaebg.

type geolve a -> a - 0.

type hyp o -> o.

type veolve a -> a -> 0- .
type Soaly. a -> a ->a- .

type Wmatch 0 0) 0 0> 0 0>a- a .
type smatch -oo>->o-o o.
type bmatch >a->o-o->o-o.

type meta...vslv. 0 -> a .
type meta...solve o o> o .

type breduce o o> o .
type reduce o o> o .
type reducel o o> o .

type dosalve o o> o o>a- .
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usolve true true true :!

wuolve (GI G2) (GG1 GG2) CDD1 , DD2) !, solve Gi GGI DDI,
wsolve G2 GG2 DD2.

vuolve (GI; G2) (GGI; GG2) DD !,(waolve Gi GGI DD;
wsolve G2 GG2 DD).

usolve (D => G) GO DD Ihyp D => wsolve G GG DD.
wsolve (pi G) (pi GG) (DD X) Ipi X\

(usolve CG X) (GG X) (DD X)).
wsolve (sigma G) (sigma GO) (DD T) !, solve CG T) (GG T) (DD T).
wsolve (box G) (box GG) DD 1, solve G GG DD.
wsolve Ga GGa DDI ghyp D DD,

wmatch D Ga DD GGa MG,
meta..vsolve NG DDi.

wsolve Ga GGa (DD ,DDi)O hyp D,
wmatch D Ga DD GGa MG,
meta..waolve NG DDl.

asolve true true true
*solve (Gi , G2) (GGi , GG2) (DDI, DD2) Iszolve Gi GGI DDI,

solve G2 GG2 DD2.
ssolve (pi G) (pi GG) (DD X) !,pi X\

(ssolve (G X) (GG X) (DD X)).
asolve (box G) (box GG) DD asolve G GO DD.
ssolve Ga GGa DDI ghyp D DD,

smatch D Ga DD GGa MG,
meta-usolve MG DD1.

asolve Ga GGa (DD , DDI) !, hyp D,
smatch D Ga DD GGa MG,
meta..vsolve MG DDi.

asolve (Gi ; G2) (GG1 ; GG2) DD
:- , error (writesans "Illegal disjunction in boxed goal").

szolve (D => G) (DD1 -> GG) DD2
:!, error (writesans "Illegal implication in boxed goal").

suolve (sigma G) (sigma GG) (DD T)
Ierror (writesans "Illegal existential in boxed goal").
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wmatch (Dl D2) Ga DD GGa MG (snatch DI Ga DD GGa MG;
imatch D2 Ga DD GGa MG).

wmatch (C => D) Ga CGG => DD) GGa (gsolve G GG, MG)
:- , wmatch D Ga DD GGa MG.

wuatch (pi D) Ga DD GGa HG !, wmatch (D X) Ga DD GGa MG.
wuatch (box D) Ga (box D) GGa MG 1, bmatch D Ga D GGa MG.
wmatch Ga Ga GGa GGa true.

snatch (Dl , D2) Ga DD GGa HG :- , (smatch DI Ga DD GGa MG;
smatch D2 Ga DD GGa MG).

smatch (G => D) Ga (GG => DD) GGa (guolve G GG, HG)
:- , smatch D Ga DD GGa HG.

smatch Cpi D) Ga DD GGa HG :- , match CD X) Ga DD GGa HG.
smatch (box D) Ga (box D) GGa (box HG)

Ibmatch D Ga D GGa HG.

bmatch 01l , D2) Ga (DDI , DD2) GGa HG !,(boatch D1 Ga DDI GGa HG;
bmatch D2 Ga DD2 GGa HG).

buatch (G => D) Ga (GG => DD) GGa (guolve G GG, HG)
9- , bmatch D Ga DD GGa MG.

buatch (pi D) Ga (pi DD) GGa HG Ibuatch (D Z:A) Ga
(DD Y:A) GGa HG.

buatch (box D) Ga (box D) GGa HG Bbuatch D Ga D GGa HG.
buatch Ga Ga GGa SGa true.

wuatch 01l ; D2) Ga DD GGa MG
:- 9, error (writesans "Illegal disjunction in program").

wmatch (sigma D) Ga DD GGa HG
- !, error (writesans "Illegal existential in program").

smatch 0D1 ; D2) Ga DD GGa HG
:- !, error (writesans "Illegal disjunction in program").

smatch (sigma D) Ga DD GGa HG
:- !, error (writesans "Illegal existential in program").

buatch (D1 ; D2) Ga DD GGa HG
- !, error (writesans "Illegal disjunction in program").

buatch (sigma D) Ga DD GGa HG
- ,error (writesans "Illegal existential in program").
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% Kota-interpreter invocation.

doacive G GG DD I, uolve G GG DDI, breduc. DD1 DD2, reduce DD2 DD.

% Solution of accumulated Meta-goals.

meta~iaolv. true true -I

meta-wuolve (NG1 , NG2) (DD1 *DD2) Imeta...aolve NG1 DDI,
meta-jraolv. MG2 DD2.

ueta-wa.olve (box MG) DD - , eta..aaolve MG DD.
meta-u.solve (goolve G GG) DD !, solve G GG DD.

meta-a.solve true true -I

meta-szaolve (KGI , M02) (DD1 ,DD2) 1, meta-a.solve KG1 DD1,
aeta-asuolve NG2 DD2.

azeta..solve (box KG) DD - meta..soolve KG DD.
meta..uaolv. (guolve 0 GG) DD -,suolve G GG DD.
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% Replaces "(box Hf)" with "true" in DD -- the set of sufficient
%. conditions.

breduce true true
% Above should be first to avoid infinite recursion on logical variables.
% This allows uninstaniated variables to be 'reduced' out of the picture.
%. (Good for all but degenerate higher-order generalizations.)

breduc. (HI ,H2) (Eli R 20) I breduce Hi Eli, breduce 12 H2i.
breduce (Hi ; 2) (Eli H 20) * breduce Hi Hli, breduce H2 H2i.'
breduce (Hi => H2) (Eii => H20) I breduce Hi Hii, breduce H2 HM.
breduce (pi K) (pi Hi) 1, pi I\ (breduce (H X) (Hi X)).
breduce (sigma H) (sigma Hi) : ,pi X\ (breduce (H X) (Hi X)).
breduce (box H) true
breduce Ha Ha-

% Simplifies sufficient conditions by removing superfluous true's.

reduce true true
%. Above should be first to avoid infinite recursion on logical variables.
% This allow. uninstaniated variables to be 'reduced' out of the picture.
% (Good for all but degenerate higher-order generalizations.)

reduce (El H 2) R 1- , reduce HI Eli, reduce H2 R2i,
reducel (Eli , 12i) H.

reduce (I ; 2) H - ,reduce Hi Eli, reduce H2 H2i,
reducel (Eli ; H2i) H.

reduce (Hi => 12) H -! reduce HI Hli, reduce H2 H2i,
reducel (Eli => H20 ff.

reduce (pi Hi) N !, pi X\ (reduce (Hi X) (Eli X)),
reducol (pi Eli) H.

reduce (sigma Hi) ff: pi X\ (reduce (El X) (Eii X)),
reducel (sigma Eli) H.

reduce (box Hi) I -I reduce HI Ili,
reducei (box Eii) H.

reduce Na Ha

reducel true true -

reducel (true , 12) R2-
reducel (Hi , true) Hi-
reducel (true ; H2) true -

reducel (Hi ; true) true -

reducel (true => H2) H2-
reducel (I => true) true -

reducel (pi A\ true) true -

reducel (sigma X\ true) true -

reducel (box true) true -

reducel H H
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A.5 Tactic-style Integration

A.5.1 Tactics for Integration

module integrate-.tac.
import tactical.

type elpni mt -> t _> int.
type - mnt -> t.
type log mnt ->nt.

type con jut -> jt.
typeO sin ~ jt -> jt.

type intgr (mt -> jt) ->(it -> t) ->o.

type dx name.
type ct name.
type p1 name.
type pal name.
type pv name.
type ell name.
type ctr name.
type p1 name.
type Cos_. name.

11 tac dx (imtgr x\1 X\X)
true.

11 tac ci (intgr x\A X\(A *x))
true.

!I tac pi (intgr x\x x\((expn x 2) djv 2))
true.

11 tac pal (mntgr X\(eXPU x M 1)) Alog x))
true.

!I tac p. (intgr x\(expn x A) x\((expn x (A + 1) div (A + 1)))
true.

!I tac cil (intgr x\(A * (B x)) x\(A * (Dj x)))
(intgr x\(B x) X\(Dj x)).

H! tac cIr (intgr x\((B x) * A) x\((Bi x) * A)
(intgr x\(B x) X\(Bi X)).

1! tac p1 (intgr X\((A x) + (B x)) x\((Ai. x) + (Bi x)))
((intgr x\(A x) x\(Ai x))
(1.ntgr x\(B x) x\(Bi W)).
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tac Cos-. (ixntgr coon sin)
true.
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A.5.2 Tacticals

module tactical..
import simplify.

kind name type.

type tac name -> o-> o->o.
index tac 1.

type maptac name -> name.

type then name -> name -> name.

type orelue name -> name -> name.
type repeat name -> name.
type idtac name.
type try name -> name.

type complete name -> name.
type quit name.

type stop name -> name.
type interact-solve name.

if tac (maptac T) true true.

! tac (maptac T) (OGa . OGb) OG : ,
tac (maptac T) OGa OGal,
tac (maptac T) OGb OGbl,

simpi (OGal , OGbl) 0G.

11 tac (maptac T) (OGa ; OGb) OG : ,
tac (maptac T) OGa OGal,
tac (maptac T) OGb OGbl,
simpi (OGal ; 0Gbl) OG.

It tac (maptac T) IG OG
tac T IG OG1,
simpi 001 0G.
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!I stop.tac ok.
!! stop.tac pop.

1! tac top-.solve (pi OGI) OG ',Pi X\Ctac top-.solve COGI X) (0G2 X)),
simpi (pi OG2) 0G.

!I tac top-.solve (OGI , 0G2) OG ',tac top-.solve OGI 0G3,
tac top-.solve 002 0G4,
simp. (0G3 , 0G4) 00.

1! tac top-.solve 001 00 I tac interact-.solve 001 0G.

H tac interect.solve true true :- ,
ni, writesaus 11--- Subtree solved ... to, ni, iii.

11 tac interact.solve OGi OG :- ,
ni, writesaus "Goal to be redTrced: ,, ali, ni,
write OGI, ui,
ni, writesans "Enter iiile "

read T\Ctac T 001 002, simpi 002 0G3,
((stop-.tac T. 00 - 003);
Ctac top-.solve 0G3 00)).

'taco k OG OG
!I tac pop- 00 00
HI tac top- 0 OG I, top.

!I tac (ebg& lame) oGI 00 I
rule-e.bg (tao top-.solve OGI 002)

(pi 0Ga\ (pi OGb\
(tac Name OGa 0Gb tac; top-s.olve OGa 0Gb)))

(ni, ni, writesans low I. rule is a generalization of".
ni, ni, write (tac lame 001 002), nl, ni,
((simpl 0G2 true, Itop) ; tac top-.solve 0G2 OG)).

H1 tac direct (pi 001) 0G Ipi X\(tac direct (OGi X) (0G2 X)),
simpl Cpi 0G2) 0G.

Htao direct COGI , 0G2) 00 I tac direct OGI 0G3,
tac direct 002 004,
simpi (003 , 0G4) 0G.
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Itac direct OI OG tac Name OG1 0G2, sinzpl 0G2 0G3, '

C(0G3 = true, 1, OG =true)
;(tac direct 0G3 0G. !
;0G3 = OG
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module tail-.rec-.itac.
import tact ical-.iebg.

% Transformational program development mapping recursive applicative
% functions (of a certain form) to tail-recursive. Illustrates
% higher-order EBG.
% This variation is designed to work with interactive generalizing
% tactics.

% Scott Dietzen, 1990

kind SIP type.

type if. exp ->exp -> SIP -> exp.
type not-. exp ->exp.

type lam (sip -> sp) -> exp.
type appl exp -> cp -> exp.

type fix Ceip ->exp) -> exp.
type equals exp ->ezp -> sp.
type times sip -> sp - SP.

type minus sip ->exp, e> p.
type nil- exp.
type cons-, sip -> P ci ep.
type null sxp ->exp.

type car eip e> sp.
type cdr OXP -> sp.
type append eip >eip ->eip.

type zero sip.
type one eIP.

type associative (sip ->sp ->eip) -> .
type commutative (sip -> sp -> p) -> .
type left-.identity (sip Gr sp - sp) -> sp -> .
type right-.identity Ceip -> sp - sp) -> sp -0 .

type getrev sip -> .
type getdiff SIP 0> .
type getf act exp ->o.

type insert-.lam (exp -> sp) ->name.

type add-.oper-.rid (sip ->exp ->exp) ->

((exp -> sp) -> asp) -> name.

type abstract-.arg (sip -> sp) ->(eip -> sip) -> name.
type name-.fn sip >(sip, -> sp) -> name.
type unfold (SIP -> sp) ->name.
type reducsj1 ((exp -> sp) ->exp) -> name.
type dist-.ife..2 (sip -> sp -exp) ->

((sip -> SP -> sip) -> sip) ->name.

type 1sf t-.id-.2 (sip -> SIP - exp) -
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(Cexp ->exp -> exp) -> sp) ->name.

type assoc-.2 (exp -> sip -> sp) ->

((exp ->exp -> exp) ->exp) ->name.

type fol&..two-.3 ((exp -> exp -> exp -> exp) -> exp) -

(exp ->exp -exp -> sp)
exp ->name.

right-.identity minus zero.

associative times.
commutative times.
left-.identity times one.
right-.identity times one.

associative append.
left-.identity append nil.
right-.identity append nil-.

getf act (fix Fact\ (lam N\
(ifs (equals N zero) one (times (appi Fact (minus I one)) N)))).

gstrev (fix Rev\ (lam L\
(if e (null L) nil.-

(append (appi Rev Ccdr L)) (cons-. (car Q) nil_))))).

gotdiff (fix Dii f\ (lam L\
(if. (null Q) zero (minus (car L) (appi Diff (cdr L)))))).

147



H! tac (insert-lamn C)
(C (fix f\(lam, n\(G f n))))
(C (lam m\(appl (fix f\(lam. n\CG f n))) in))).

!I tac (add-.oper.rid Op C)
(C A(G x))
(C x\(Op, (G x) W) right-..identity Op A.

!I tac (abutract.arg Ci C2)
(Cl (C2 A))
(Ci (appi (lamn m\(C2 mn)) A)).

1! tac, (name.fn Fnew C)
(C G)
(C (fix fnew\G)) Fne, ( f ix fneg\G).

Itac (unfold C)
(C (fix f\(G f)))
(C (G (fix f\(G f)))).

1! tac (reduc.... C)
(C x\(appl (lam n\(G n)) x))
(C x\(G x)).

Itac (dist-.ife-.2 Op C)
(C X\y\(Op (if. (Dool x y) (El x y) (E2 x y)) (H x y)))
(C x\y\(ife (Bool x y) (Op, (El x y) (H x y))

(Op (E2 x y) (H x y)))).

HI tac; (left-d-.2 Op C)
(C x\y\(Op A (H x y)))
(C X\y\(H x Y)) left-.identity Op A.

*tac (assoc_.2 Op C)
(C X\y\(Op (Op, (Hi x y) (H2 x y)) WH x y)))
(C X\Y\(Op (Hi x y) (Op (H2 x y) (H3 x y)))) associative Op.

'tac (fold.two-.3 CI C2 (fix f\(lam in\(lam n\CC2 F n mn))))) % no occur f
(Ci f\x\y\(C2 F (Hi x y) (H2 x y))) %no occur f
(Ci f\x\y\(appl (appl f (12 x y)) (HI x y))).

%C1 context within input program to be replaced.
U% C2 -- matches some function F in both the original definition
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%%and the input program
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%%%%%%%%%The invocation:

% getiact F, tac top-.solve F Fout.

%%Y:.V:.%.Y.%. The inputs as prompted

% I. insert-.lam G\G.

% 2. add-.oper..xid times G\Clam n\(G n)).

% 3. abstract-.arg G\G
G\(lan n\(times (HO ni) G)).

% 4. name-in Fuew G\(appl G H).

% 5. untold G\Cappl (fix fIi\lam m\(lsiu \

(times (appi G n) in)))) W).

% 6. reduce..i G\(appl (fix fI\(lam m\(la n\

(times (G n) in)))) H).

o% 7. diet-.ife-.2 times G\(appl (fix fii\lam m\Clan n\G i n)))) H).

% 8. left.id-.2 times G\Ce&ppl (fix tI\(3as z\(a u\
(ifs (Hi in n) (G m 10) (W3 m n))))) W).

% 9. assoc-2 times G\(appl (fix fi\(lam, m\(la. ni\
(ite MH i n ) CH2 m n1) (Gma n))))) H).

%.10. told-.two-.3 G\(appl (fix fl\(lam in\lam. n\
(ife (WI m n) (W2 i n ) (G f1 m n))))) H)

G\Hl\12\(tines (appi 0 Hi) R2)
Fnew.

%11. ok.
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A.7 Constraints

We illustrate the nature of the higher-order constraints with the set of constraint equations
coming out the program transformation example introduced in Chapter 7.

[
<Op (appi Gl (Flbi m fl)) (Flo m 1) == F9 m 11>
<Op (appi GI n) h2 == F3 h2 n>
<F9 x xl == Op (El x xl) (Op (H2 x xl) (H3 x xl))>
<Op COp (Il 1 1) (H2 ml ill)) (W ml ill) == F71 ml f11>
<F6 x2 x3 == Op (G2 x3) x2>
<Op Cappi Clam N \ CG2 1f)) W4 :5 == FS :5 x4>
<Op (lam N \ (G3 m2 N)) (H m2) ==

Op (lamn Ni \ Cappi (fix F \ (lain N \ (G F N))) NI)) m2>
<F3 111 m3 == Op (G3 111 m3) (H iii)>
<Op Cappi (fix F \ (G4 F)) n2) m4 == F3 m4 nL2>
<FS :6 x7 == Op Cappi (G4 (fix F \ (G4 F))) :7) x6>
<Op Cife MF m5 f12) (El m5 112) ME m5 112)) (H4 m5 f12) ==F6 m5 f12>
<Op DD (Fe m6 f13) == Op (El %68 113) (H4 m6 113)>
<F71 .7 114 == Op (E2 m7 114) (H4 m7 114)>

Prelix Fragment:
(sigma DD F10 FlOl F3 F5 F6 F7 F71 F8 F9 G Op) (uigma G3 I(pi m2 ul m3)
[sigma G4) (pi m4 n2 x6 :7) (sigma. G2)(pi x5 x4 x2 :3) [sigma El E2 H1
(pi mS 112 m7 114 m6 113) (sigma Hl H2 13) (pi ml f11 x :1) (sigma G1)
(pi h2 n m f1)
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